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ABSTRACT

A new analytical model for predicting failure under a generalized, triaxial stress state was
developed by the author and initially reported in 1984.  The model was validated for predicting
failure under elevated-temperature creep-rupture conditions.  Biaxial data for three alloy steels,
Types 304 and 316 stainless steels and Inconel 600, demonstrated two to three orders of
magnitude reduction in the scatter of predicted versus observed creep-rupture times as
compared to the classical failure models of Mises, Tresca, and Rankine.  In 1990, the new model
was incorporated into American Society of Mechanical Engineers (ASME) Code Case N47-29 for
design of components operating under creep-rupture conditions.  The current report provides
additional validation of the model for predicting failure under time-independent conditions
and also outlines a methodology for predicting failure under cyclic, time-dependent, creep-
fatigue conditions.  The later extension of the methodology may have the potential to improve
failure predictions there as well.  These results are relevant to most design applications, but they
have special relevance to high-performance design applications such as components for high-
pressure equipment, nuclear reactors, and jet engines.
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1.0  INTRODUCTION

The purpose of this report is to summarize the results of work to extend the applicability of
a failure model (strength theory) developed by the author to improve predictions both under
time-dependent and time-independent failure conditions.  The model can provide significantly
improved failure predictions as compared to the classical models of von Mises (noted hereafter
as Mises), Tresca, and Rankine.1  One of the more important features of the model is that it has
the capability to distinguish between tensile and compressive stress states in predicting failure,
a feature that is lacking in the classical failure models that are utilized in most structural design
codes today.  The classical models are, in general, one-parameter models in that they  use only
failure under a pure tensile stress state to predict failure under other arbitrary, triaxial, stress
states.  The author’s model is a two-parameter model that utilizes failure under two
independent stress states (pure tension and one other stress state such as pure compression or
pure torsion) to predict failure under other arbitrary triaxial stress states.  The author’s model is
denoted in this report as the H2P (Huddleston two-parameter) model.

The H2P failure model was developed by the author in the mid-1980s.2  This initial work
was performed while the author was employed by Oak Ridge National Laboratory (ORNL),
Oak Ridge, Tennessee, and was sponsored by the U.S. Department of Energy.  The work
focused on development and validation of improved design and failure criteria for nuclear
reactor components operating at elevated temperature.  The H2P model demonstrated
significantly improved failure predictions for Type 304 stainless steel specimens tested to failure
at 1100°F (593°C) under biaxial stress conditions.  The model reduced the variability between
predicted and observed lives by two to three orders of magnitude.  In 1990, the American
Society of Mechanical Engineers (ASME) incorporated the model into ASME Code Case N47-293

for application in computing creep-rupture damage in components operating at elevated
temperature. In 1992, the model was shown to provide significantly improved  failure
predictions  for Type 316 stainless steel specimens tested under biaxial creep-rupture conditions
at 1112°F (600°C);4 and subsequently in 1993, the model was shown to provide  analogous
results for Inconel 600 tested at 1500°F (816°C).5

Because of insufficient program funds and other priorities, work on the H2P model at
ORNL was terminated in the post-1993 period.  In 1994, the author retired from ORNL, and
realizing the significant impact that the improved model could have in providing a more
accurate design methodology, the author chose to continue to develop the methodology. The
objective was to extend the applicability of the model to time-independent failure and to time-
dependent creep-fatigue failure.  This report documents this work and demonstrates the
superior failure prediction capability of the H2P model as compared to the classical (one-
parameter) failure models.  The balance of this report provides:  (1) a brief overview of the
classical failure models; (2) a mathematical and  geometric description of the H2P failure model;
(3) model/data correlations encompassing both time-independent and time-dependent failure
under biaxial and triaxial stress states; and (4) some conclusions with recommendations for
further model validation.   The following sign convention is utilized for all stress parameters in
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this report:  Tensile stresses are always positive, and compressive stresses (including pressure)
are always negative.
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2.0  FAILURE MODES AND MODELS

Methodologies for predicting failure address a specific failure mode.  Given a specific
failure mode, the predictive methodology generally combines a failure (strength) model, such
as the Mises model, with other criteria, such as a damage accumulation criterion, for predicting
failure.  It is not the purpose of this document to review these modes and predictive
methodologies in detail; however, a brief review of failure modes and selected failure models is
provided as they relate to the current work.  The major approaches to predicting failure are
based on (1) crack initiation and (2) crack growth (unstable propagation).  The models and
assessments in this report are based on the crack-initiation approach.  It is also assumed that
stress-strain is predominately elastic such that true stress and engineering stress are
approximately equal.

2.1 FAILURE MODES
Structural failure can occur by (1) time-independent modes, such as instantaneous or short-

time fracture, plastic instability, fatigue, and instantaneous buckling, or (2) time-dependent
modes such as creep-rupture, creep-fatigue, and creep-buckling.  Various methods are used for
predicting failure for each of these different modes.  In each case, a failure model, such as the
Tresca, Mises, or Rankine model, is generally factored into the overall predictive methodology.
As previously noted, the H2P failure model has been shown to significantly improve life
predictions for creep-rupture tests conducted under biaxial stress states.2,!4, 5  In addition, the
author has investigated the ability of the model to predict the onset of plastic instability for
tensile loading under hydrostatic pressure and found that it provides significantly better
predictions than the classical model of Mises.  These unpublished results are not included in the
current report.  In this report, the applicability of the author’s failure model for predicting three
different failure modes is investigated; these modes are (1) time-independent fracture, (2) time-
dependent stress-rupture, and (3) time-dependent creep-fatigue.

2.2 CLASSICAL FAILURE MODELS
A failure model, in general, provides an analytical means for converting a complex, three-

dimensional (3-D), stress state into an equivalent uniaxial tensile stress state such that simple
laboratory test data can be utilized to predict failure under complex, three-dimensional, stress
states.  The three most widely used failure models for structural design are: (1) the Tresca model
(based upon constant maximum shear stress at failure); (2) the Mises model (based on constant
elastic distortion strain energy at failure, which is equivalent to constant octahedral shear stress
at failure); and (3) the Rankine model (based on constant maximum principal stress at failure).1
These three phenomenological models are single-parameter models in the sense that they each
are formulated to identically fit only one point in triaxial stress/failure space, this point
generally being the uniaxial tensile failure point.  Failure at any other arbitrary point in triaxial
stress/failure space can then be predicted by the model.  Mathematically, these three models
can each be expressed in terms of one or more of the principal stresses.  Given a complex stress
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state with ordered principal stresses s1!≥!s2 ≥  s3 , the equivalent stress intensity, se , for these
three models can be expressed by the equations:

Tresca: se =  A1(s1 - s3) ,  (2.1)

Mises: se =  A2 
  

† 

s1 - s2( )2
+ s2 - s3( )2

+ s3 - s1( )2

2
, (2.2)

and

Rankine: se =  A3 s1  (2.3)

where the A1, A2, and A3 are constants that are determined such that the model identically fits a
selected point in triaxial stress space.  By selecting that point as the uniaxial tensile failure point,
the equivalent stress intensity as defined by these three classical models becomes:

Tresca: se =  (s1 – s3) , (2.4)

Mises: se =  
  

† 

s1 - s2( )2
+ s2 - s3( )2

+ s3 - s1( )2

2
, (2.5)

and

Rankine: se =  s1 (2.6)

Letting s0 denote the uniaxial tensile failure stress, then failure for any complex triaxial
stress state is predicted to occur when se equals s0.

The Rankine model can also be applied for compression stress states to limit the minimum
principal stress to the material compression strength.  Limiting both the maximum and
minimum principal stresses to the tensile and compression strength of the material requires two
independent Rankine failure equations, however.  Equation 2.6 limits maximum principal stress
to the material tensile strength.  The analogous equation, equating se to  s3 , defines failure
when s3 equals s• , where  s• denotes the failure stress under pure compression.

Principal stresses for an arbitrary structural element are depicted in Fig. 2.1a.  The
principal stresses can be broken down into the deviatoric stresses plus a hydrostatic stress
component as depicted in Fig. 2.1b.  The Rankine failure model is one-dimensional in that it
relates failure to only one of the three principal stresses (s1); thus, the remaining two principal
stresses have no influence on failure.  While some materials behave in this manner, most do not.
The Tresca model is two-dimensional in that it relates failure to the difference between only two
of the maximum and the minimum principal stresses (s1 and  s3).  The difference between any
two of the principal stresses is equivalent to the difference between the analogous two
deviatoric stresses, which eliminates any influence of the hydrostatic stress.  The Tresca model,
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therefore, allows no influence on failure by the intermediate principal stress or the hydrostatic
stress.  Failure for many materials can be reliably predicted using the Tresca model; however,
under certain conditions, such as triaxial stress states where there is a significant hydrostatic
stress component, predictions may be inaccurate, as will be shown subsequently in this report.
The Mises model is three-dimensional in the sense that it incorporates all three principal
stresses; however, they are incorporated as differences between the principal stresses, which  is
equivalent to differences between the analogous deviatoric stresses.  The Mises model thus
allows the three deviatoric stresses to influence failure, but not the hydrostatic stress.  Failure in
many materials can be reliably predicted by the Mises model; however, because it does not
account for the influence of the hydrostatic stress, it can result in inaccurate failure predictions
where triaxial stresses are significant, as will be show subsequently.  The H2P failure model,
which is the subject of this report, is three-dimensional in that it allows all three principal
stresses as well as the hydrostatic stress component to influence the failure prediction.

Figure 2.1. Principal and deviatoric stresses.

The classical Mohr failure model1 that is utilized by Civil engineers in soil and rock
mechanics was not evaluated in this study because it is not utilized in the design of structures of
interest in this study.  The Mohr model does allow for the influence of the hydrostatic pressure
on failure, but ignores any effect of the intermediate principal stress.
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3.0  H2P FAILURE MODEL

The H2P failure model is described in this report section.  Beginning with a complex,
triaxial stress state with principal stresses s1 , s2 , and  s3 ,  the model in its most general form
defines the equivalent stress intensity as

se =  
  

† 

s exp b J1
Ss

+ a
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ (3.1)

Parameters “a” and “b” are determined such that the model identically fits two failure
points in triaxial stress space.  The remaining stress parameters are all stress invariant and are
defined by the equations:

J1 =  s1 + s2 + s3 (3.2)

† 

s =  
  

† 

s1 - s2( )2
+ s2 - s3( )2

+ s3 - s1( )2

2
, (3.3)

and

Ss =    

† 

s1
2 + s2

2 + s3
2 (3.4)

One can express these same stress parameters in terms of one or more of the classical stress
invariants as follows:

† 

s =    

† 

3 ¢ J 2 (3.5)

Ss =  
  

† 

6 ¢ J 2 + J1
2

3

=    

† 

J1
2 - 2J2 (3.6)

=    

† 

3 ¢ J 2 + J2

Parameters   

† 

J1 , J2 , ¢ J 2 ,  and s  have the usual definitions with

 J1  =  1st invariant of the stress tensor

 J2  =  2nd invariant of the stress tensor

  

† 

¢ J 2 =  2nd invariant of the deviatoric stress tensor

† 

s =  Mises stress intensity (Mises equivalent stress)
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The invariant stress parameters making up the H2P failure model are graphically
illustrated in Fig.!3.1.  Constraining the model to identically fit the pure tensile failure point
(similar to the Mises, Tresca, and Rankine models) results in a value  “a” of –1.0. The model
then takes the form:

se =  
  

† 

s exp b J1
Ss

-1
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ (3.7)

Given that s0 denotes the pure tensile failure stress, then for any point in triaxial stress
space, failure is predicted to occur when:

se =  s0 (3.8)

Figure 3.1.  Geometric representation of H2P failure model stress parameters.

Two options exist for determining H2P model parameter “b” from laboratory-type  failure
data.  These are: (1) determine “b” such that the model identically fits a second point in
stress/failure space (other than the pure tensile point) and (2) determine “b” using least-squares
techniques so that the model provides a best fit to a set of failure tests spanning triaxial stress
space.  Both methods have been successfully utilized with the model.  These two methods are
described in the report sections that follow.
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3.1 DETERMINING PARAMETER “b” FROM A SECOND FAILURE TEST
Tests of interest for determining “b” from a second point in triaxial stress/failure space

include:  (1) tests that can easily be conducted in the laboratory and (2) tests that result in a
value of “b” that will provide good predictability of failure at other points throughout the
triaxial stress space.  Two tests meeting criterion 1 are the pure compression test and the pure
torsion test.  Using the average of several identical compression or torsion tests is more
appropriate than using only one test to define “b.”   Meeting criterion 2 requires assessments of
the model using different materials and a range of triaxial stress states.  The assessments in this
report represent a first step toward meeting these two criteria.

3.1.1 Determining Parameter “b” from a Pure Compression Test
Defining s0c as the failure stress in a pure compression test, where  s0c ≤ 0, then for a

cylindrical specimen loaded by an axial compression stress, the principal stresses at failure are
determined by the equations:

s1 =  s2    =    0 (3.9)

and

s3 =  s0c    =    –s0c . (3.10)

At failure the relevant stress parameters for the H2P failure model (Eqs. 3.2 – 3.4)  become:

J1 =  –sµ, (3.11)

SS =  sµ, (3.12)

and

† 

s =  sµ. (3.13)

Failure at any point in stress space is then defined by

se =  s0 (3.14)

Inserting Eq. 3.7 with the relevant stress parameters (Eqs. 3.11 – 3.13) into Eq. 3.14 leads to
the following equation defining parameter “b” based on a single compression failure test (or the
average of a set of several duplicate compression tests):

b =  
  

† 

1
2

Ln
s0c 
sc  

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ (3.15)
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 The H2P failure model based on identically fitting the pure tension and pure compression
failure points thus becomes:

se =  
  

† 

s exp 1
2

Ln
s0c 
s0

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜  

J1
Ss

-1
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

(3.16)

3.1.2 Determining Parameter “b” from a Pure Torsion Test
With t0 defined as the torsional failure stress in a cylindrical specimen under a pure

torsion load, principal stresses are determined by the equations:

s1 =  t0, (3.17)

s2 =  0, (3.18)

and

s3 =  – t0, (3.19)

At failure, the relevant H2P model stress parameters become:

J1 =  0 , (3.20)

Ss =  t0   

† 

2 , (3.21)

† 

s =  t0   

† 

3 . (3.22)

Failure is predicted to occur when  se equals s0.  Incorporating the relevant stress
parameters into Eq. 3.7 and equating to tensile strength, s0 , parameter “b,” based on a pure
torsion failure test (or on the average of a set of duplicate torsion tests), becomes:

b =  Ln 
  

† 

t0 3
s0

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ (3.23)

The H2P failure model, based on identically fitting the pure tension and pure torsion
failure points, thus becomes:

se =  
  

† 

s exp Ln t0 3
s0

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜  

J1
Ss

-1
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

(3.24)
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3.2 DETERMINING PARAMETER “b” FROM A SET OF M FAILURE TESTS
Parameter “b” in the H2P model can be determined such that the model provides a “best

fit” to a set of failure tests encompassing different stress states.  For this type of fit, the model
does not necessarily identically fit any one of the points other than the pure tension point.
Given a set of M failure tests spanning triaxial stress space, one failure equation can be written
for each of the M tests (i.e., using Eqs. 3.7 and 3.14).  The value of “b” is unknown in each of
these equations.  For each test the deviation, di , between the predicted value of stress at failure,
s0, and the observed value of stress at failure, se , becomes

di =  
  

† 

s0 - s exp b J1
Ss

-1
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ 

Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 
(3.25)

The sum of the squared deviations, denoted as SSQ , becomes

SSQ =  
  

† 

di
2

i=1

M
Â (3.26)

One can now determine the value of parameter “b” that gives the minimum value for SSQ.
(This is best done using one’s computer.)

Parameter “b” can also be determined somewhat more easily using a second method
wherein Eq. 3.25 is linearized by taking its logarithm.  Standard linear least-squares techniques
can then be used to determining “b.”  This approach, summarized in Appendix A, was
provided by one of the technical reviewers of this paper after completion of the paper.  The
method is not evaluated in this report.

The H2P failure model is, therefore, expressed by Eq. 3.7.  One can determine parameter
“b” using any of the three methods outlined: (1) from Eq. 3.15 and a single compression test (or
the average of a set of duplicate compression tests); (2) from Eq. 3.23 and a single torsion test (or
the average of a set of duplicate torsion tests); or (3) from Eqs. 3.25 and 3.26 and a set of M
failure tests spanning triaxial stress/failure space.  In subsequent results presented in this
report, each of these three methods is successfully utilized for determining “b.”  While the
available triaxial failure data are insufficient to make a definite conclusion as to the best
method, all three methods provide improved predictions relative to the classical models of
Mises, Tresca, and Rankine.  For the assessments based on time-independent failure data, the
compression test provides the simplest and most accurate basis for determining parameter “b,”
as will be shown subsequently.

3.3 MODEL FAILURE SURFACES
One means for visually describing the H2P failure model is to compare the two-

dimensional (2-D) failure contour and the three-dimensional failure surface with the analogous
contours and surfaces of the classical failure models.  These comparisons are made in this report
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section.  Failure contours and surfaces are defined as the contour or surface of constant
equivalent stress, se = s0, where s0 is the material tensile strength.

Figure 3.2 compares a typical two-dimensional contour for the H2P model with the
analogous contours for the classical models.  The H2P model contour is plotted for a parameter
“b” value of 0.24 (ratio of compression to tensile strength of 1.62).  Note that the H2P model
(with b > 0) predicts that higher compressive stress states are required to produce failure as
compared to the same tensile stress state.  For parameter “b” less than zero, the H2P model
predicts just the opposite requiring higher tensile stresses to produce failure.  Because the
compressive strength in most materials is higher than the tensile strength, most materials will
have a value of  “b” greater than zero.  For the case of  “b” equal to 0.0, the H2P model reduces
to the classical Mises model.  The classical failure models, being single-parameter models, are
unable to capture this important characteristic material behavior, making it difficult for
designers to take full advantage of both the compressive and tensile strengths of a material
when these strengths differ.

Figure 3.2.  Comparison of 2-D failure contours.

Figure 3.3 shows a typical three-dimensional failure surface for the H2P model for a ratio
of compressive-to-tensile strength of 1.75 (b = 0.28).  The bottle-shaped surface extends to ±•
along the (1,1,1) axis in both the positive (J1 > 0) and the negative (J1 < 0) directions.  The
analogous surfaces for the Mises and Tresca models are shown in Fig. 3.4 and also extend to ±•
along the (1,1,1) direction.  The ability of the H2P model to capture differences in failure under
tensile versus compressive stress states is clearly indicated by the bottle-shaped failure surface,
whereas the prismatic shapes of the Mises and Tresca models indicate their inability to capture
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this difference.  The three-dimensional failure surface for the Rankine model is shown in
Fig.!3.5.  By limiting maximum principal stress, s1 , to the tensile strength, s0 , and limiting
minimum principal stress, s3, to the compressive strength, s0c , one can take advantage of both
the tensile and compressive strengths of a material using two equations.  However, where
triaxial stresses are involved, the Rankine model cannot account for the effect of the hydrostatic
pressure (i.e., for J1 / 3) nor for the effect of the intermediate principal stress, s2 .

Figure 3.3. H2P model failure surface (ratio of compressive to tensile strength of
1.75![b = 0.28]).

While these model surfaces (Tresca, Mises, and H2P) extend to ±• in theory, materials
may not have infinite strength under both triaxial compression (i.e., J1 = +• ) and triaxial
tension (J1!=!+•).  It is possible that homogeneous materials may have infinite strength in
triaxial compression (i.e., a solid sphere may not fail if submerged to an infinite depth in the
ocean).  However, one could hypothesize that materials can fail at some level of triaxial tension.
At very high levels of triaxial tension, failure may occur by separation of atoms at the atomic
level.  One might, therefore, hypothesize that the bottle-shaped failure surface in Fig. 3.3 has a
“cap” at some level of triaxial tension.  The author is not aware of any theory or data that might
determine such a cap.  One could put an arbitrarily imposed cap on triaxial tension for design
purposes.
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Figure 3.4.  Mises and Tresca 3-D failure surfaces.

Figure 3.5.  Rankine model 3-D failure surface.
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4.0  MODEL / DATA CORRELATIONS

Experimental laboratory data characterizing time-independent and time-dependent failure
under different triaxial stress states are utilized to correlate and compare predictions using the
H2P failure model with predictions using the classical failure models.  Although this type of
data is not readily available in the open literature, sufficient data of this type are available such
that some model/data correlations can be made.  These data and assessments are described in
this report section. The failure data, which include tests under both biaxial and triaxial stress
states, are summarized below by failure mode and data set.

A.  Time-Independent Failure Modes

Data Sets 1 and 2: Tension, compression, and torsion failure tests of cast iron under
different hydrostatic pressures (two independent data sets, both using the same cast-
iron material).

Data Set 3: Compression failure tests of marble under different hydrostatic pressures.

B.  Time-Dependent Failure Modes

Data Sets 4, 5, and 6: Biaxial creep-rupture tests of Types 304 and 316 stainless steels
and Inconel!600.

Data Set 7: Uniaxial creep-fatigue tests of two different materials denoted as Material 1
and Material!2.

Failure model/data correlations for these individual data sets follow.

4.1 DATA SET 1 CORRELATIONS—PUGH ET AL. TENSION, COMPRESSION,
AND TORSION TESTS OF CAST IRON UNDER HYDROSTATIC
PRESSURE

Tests useful for assessment of failure models under triaxial stress states were conducted by
Pugh and Green and by Crossland and Dearden.  These data were reported by Pugh in 1965.6
Pugh and Green investigated the effect of hydrostatic pressure on the fracture stress of several
materials, including cast iron, at room temperature by testing cylindrical specimens under
combined axial tension and hydrostatic pressure.  Pugh compared the results to those of
Crossland and Dearden,6 who had conducted similar tests of the same cast-iron material but
under (1) combined axial compression and hydrostatic pressure. and (2) combined torsion and
hydrostatic pressure.    In order to use these results in the current investigation, Pugh’s plot of
these data must be scaled to develop a numerical data set from which to work.  These results
and their development and use in assessment of the H2P failure model as well as the classical
models of Mises, Tresca, and Rankine are summarized in this report section.  The results cover
scaling of  Pugh’s plot, converting the resulting plot parameters into specimen stress
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parameters, determining material strength values, determining a numerical value for parameter
“b” in the H2P model, predicting the stress at fracture based on the H2P model with similar
predictions based on the classical models, and finally, comparing these predicted fracture
stresses to the experimentally observed stresses at fracture.

4.1.1 Scaling Data Set 1
Pugh6 reported the previously noted fracture data in the form of plots of “stress at fracture”

versus “volumetric compressive stress.”   This makes it necessary to scale the plot in order to
develop a numerical data set from which to work.  Although it is preferable not to scale plots,
minor differences between scaled values and the actual test results should not significantly alter
the results and conclusions for the current assessments.

Pugh plotted maximum principal stress, s1 , versus volumetric compressive stress which
he defined as –J1/3.  Scaled values from Pugh’s plot are summarized in Table 4.1 and are
plotted in Fig. 4.1.  In converting these values into the applied loadings, the following
nomenclature is utilized:

Z  = applied tensile or compressive stress (force/area with Z > 0 for tension
and Z < 0 for  compression)

W = applied torsion stress

P  = applied hydrostatic pressure

s1 , s2 , s3 = principal stresses with  s1 ≥ s2 ≥ s3

J1 = s1 + s2 + s3 = 1st  invariant of the stress tensor

scv = –J1 / 3 = volumetric compressive stress

(c,d) = scaled values from Pugh’s plot (i.e., numerical values in Table 4.1 for
[scv!, s1] for  an individual test point)

Conversion of Pugh’s plot parameters into the applied specimen loadings Z, W, and P is
required in order to compute specimen principal stresses.  This is done as follows for each of the
applied loading conditions.

Pure Tensile Stress under Hydrostatic Pressure:  For a pure tensile stress, Z, applied to a
cylindrical specimen under hydrostatic pressure, P, the volumetric compressive stress, and the
maximum principal stress are determined by the equations:

scv =    

† 

-J1
3

= -P-
Z
3

= c (4.1)

and
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s1 =  Z + P = d (4.2)

where “c” and “d” are the scaled values from Table 4.1.  The applied stress loadings, Z and
P, are determined by solving these two equations simultaneously, giving:

P =  
  

† 

- 3c + d( )
2

(4.3)

and

Z =  
  

† 

3c + d( )
2

 (4.4)

where Z > 0.

Table 4.1. Data Set 1:  scaled data.

“c”
Volumetric Compressive

Stress (scv)

“d”
Maximum Principal

Stress
Test
No.

(ksi) (MPa) (ksi) (MPa)
A.  Pure Torsion under Hydrostatic Pressure

1  0.00  0.0  30.60  211.0
 2  7.92  54.6  26.67  183.9
 3 16.09  110.9  22.47  154.9
 4 32.17  221.8  13.28  91.6
 5 47.98  330.8  -0.89  -6.1
 6 60.00  413.7  -10.60 -73.1
 7 69.99  482.6  -19.27  -132.9

B.  Pure Tension under Hydrostatic Pressure
 8  -8.89  -61.3  26.67 183.9
 9  -1.04  -7.2  22.20 153.1
10  4.89  33.7  24.30 167.5
11  10.69  73.7  27.72 191.1
12  22.42  154.6  12.23  84.3
13  30.45 210.0  8.82  60.8
14  39.02 269.0 2.78  19.2
15  47.72  329.0  -3.25  -22.4
16  61.03  420.8 -23.73 -163.6
17  66.69  459.8  -25.56  -176.2
18  74.47  513.5  -4.04  -27.9
19  74.99  517.1  -25.56  -176.2
20  77.10  531.6  -31.34  -216.1
21  81.98  565.3  -6.40  -44.1
22  84.22  580.7 -32.39  -223.3

C.  Pure Compression
23  28.08  193.6  0.00  0.00
24  30.00  206.9  0.00  0.00
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Figure 4.1. Tensile or shear stress at fracture versus volumetric
compressive stress (Source: Pugh6)

Pure Compressive Stress under Hydrostatic Pressure:  For a pure compression stress,
Z, applied to a cylindrical specimen under a hydrostatic pressure, P, the volumetric stress, and
maximum principal stress are determined by the equations:

scv =    

† 

-J1
3

=
-3P- Z

3
= c (4.5)

and

s1 =  + P  =  d (4.6)

Solving these two equations simultaneously for P and Z gives:

P =  + d (4.7)

and

Z = – 3(c + d) (4.8)

where Z < 0.

Pure Torsion under Hydrostatic Pressure:  For a pure torsion stress, W, applied to a
cylindrical specimen under a  hydrostatic pressure, P, volumetric stress and maximum principal
stress are determined by the equations:
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scv =    

† 

-J1
3

= -P = c (4.9)

and

s1 =  W + P = d (4.10)

Solving these two equations gives the applied loadings, P and W with:

P =  – c (4.11)

and

W =  c + d (4.12)

Equations 4.1 – 4.12 provide the basis for converting the scaled values in Table!4.1 into the
applied loadings Z, W, and P summarized in Table 4.2.

With the applied specimen loads determined, specimen principal stresses and stress
parameters required by the H2P and classical failure models are determined from these values.

4.1.2 Principal Stresses and Stress Parameters
Equations for computing specimen stress parameters are developed from the applied

loadings in Table!4.2 for each of the three loading conditions.  These equations are summarized
in Table 4.3 and, in conjunction with the applied loadings in Table 4.2, are utilized to determine
the numerical values for the principal stresses and stress parameters for each of the tests in Data
Set 1.  The resulting values are summarized in Table 4.4.

4.1.3 Material Strength Properties
Strengths of the cast-iron material in Data Set 1 are determined from the data in Table 4.4,

Test 1 (pure torsion), Test 8 (pure tension), and the average of Tests 23 and 24 (pure
compression), all conducted under zero hydrostatic pressure.  The resulting strengths are:

s0    =   26.67 ksi (183.9 MPa)

s0c   =  -87.12 ksi (-600.7 MPa) (4.13)

t0     =    30.60 ksi (211.0 MPa)
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Table 4.2.  Data Set 1: applied stress loadings at fracture.

Stress Fractue (Z or W) Hydrostatic Pressure (P)Test
No. (ksi) (MPa) (ksi) (MPa)

A.  Pure Torsion under Hydrostatic Pressure
1  30.60  211.0 0.00 0.00
2  34.59  183.9 -7.92  -54.6
3  38.56  154.9 -16.09 -110.9
4  45.45  91.6 -32.17 -221.8
5  47.09 -6.1 -47.98 -330.8
6  49.20 -73.1 -60.00 -413.7
7 50.72 -132.9 - 69.99 -482.6

B.  Pure Tension under Hydrostatic Pressure
8  26.67  183.9 0.00  0.00
9  31.75  153.1  -9.54 -65.8

10  43.79  167.5 -19.49 -134.4
11  57.61  191.1 -29.89 -206.1
12  51.97  84.3 -39.74 -274.0
13  58.91  60.8 -50.09 -345.4
14  62.70  19.2 -59.92 -413.1
15  66.69 -22.4 -69.95 -482.3
16  55.95 -163.6 -79.67 -549.3
17  61.69 -176.2 -87.25 -601.6
18 105.64 -27.9 -109.68 -756.2
19  74.14 -176.2 -99.71 -687.5
20  68.64 -216.1 -99.98 -689.4
21 113.36 -44.1 -119.76 -825.7
22  77.74 -223.3 -110.13 -759.3

C.  Pure Compression
23 -84.25 580.9 0.00 0.00
24 -90.00 620.6 0.00 0.00
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Table 4.3.  Equations for principal stresses and stress parameters for three basic loading conditions of cylindrical specimens.*

s1 s2 s3 J1

† 

s Ss smax smin tmax sv scv

A.  Combined Torsion and Hydrostatic Pressure

W+P +P –W+P 3P   

† 

W 3   

† 

2W2 + 3P2 W+P –W+P W P –P

B.  Combined Tension and Hydrostatic Pressure (Z≥0)

Z+P P P Z+3P Z   

† 

Z2 + 2PZ + 3P2 Z+P P Z/2 Z/3+P –Z/3–P

C.  Combined Compression and Hydrostatic Pressure (Z≤0)

P P Z+P Z+3P ZÁ   

† 

Z2 + 2PZ + 3P2 P Z+P
  

† 

Z
2 Z/3+P –Z/3–P

*Tensile stresses are always positive, and compressive stresses (including pressure) are always negative.
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Table 4.4. Data Set 1:  applied loadings and stress parameters.*

Test P
(ksi)

Z
(ksi)

W
(ksi)

s1
(ksi)

s2
(ksi)

s3
(ksi)

J1
(ksi)

Ss
(ksi)

† 

s 
(ksi)

tmax
(ksi)

A.  Pure Torsion, W,  under Hydrostatic Pressure, P

1 0.00 0.00 30.60  30.60  0.00 -30.60  0.00 43.28 53.01 30.60
2  - 7.92 0.00 34.59  26.67 -7.92 -42.51 -23.76 50.80 59.91 34.59
3 -16.09 0.00 38.56  22.47 -16.09 -54.65 -48.27 61.24 66.78 38.56
4 -32.17 0.00 45.45  13.28 -32.17 -77.61 -96.50 85.06 78.72 45.45
5 -47.98 0.00 47.09 -0.89 -47.98 -95.07 -143.94 106.49 81.56 47.09
6 -60.00 0.00 49.40 -10.60 -60.00 -109.40 -180.00 125.22 85.56 49.40
7 -69.99 0.00 50.72 -19.27 -69.99 -120.71 -209.96 140.85 87.85 50.72

B.  Pure Tension, Z, under Hydrostatic Pressure, P

8  0.00 26.67 0.00  26.67  0.00 0.00  26.67 26.67 26.67 13.33
9 -9.54 31.75 0.00  22.20  -9.54  -9.54  3.12 25.98 31.75 15.87

10 -19.49 43.79 0.00  24.30 -19.49 -19.49 -14.67 36.75 43.79 21.90
11 -29.89 57.61 0.00  27.72 -29.89 -28.89 -32.06 50.55 57.61 28.81
12 -39.74 51.97 0.00  12.23 -39.74 -39.74 -67.25 57.52 51.97 25.99
13 -50.09 58.91 0.00  8.82 -50.09 -50.09 -91.36 71.39 58.91 29.48
14 -59.92 62.70 0.00  2.78 -59.92 -59.92 -117.08 84.79 62.70 31.35
15 -69.95 66.69 0.00 -3.25 -69.95 -69.95 -143.15 98.97 66.69 33.35
16 -79.67 55.95 0.00 -23.73 -79.67 -79.67 -143.08 115.15 55.95 27.97
17  - 87.25 61.69 0.00 -25.56 -87.25 -87.25 -200.07 126.02 61.69 30.85
18 -109.68 105.84 0.00 -4.04 -109.68 -109.68 -223.40 155.16 105.64 52.82
19  - 99.71 74.14 0.00 -25.56 -99.71  -99.71 -224.98 143.31 74.14 37.09
20 -99.98 68.64 0.00 -31.34 -99.98 -99.98 -231.30 144.83 68.64 34.32
21 -119.76 113.36 0.00 -6.40 -119.76 -119.76 -245.93 169.49 113.36 56.68
22 -110.13 77.74 0.00 -32.39 -110.13 -110.13 -252.65 159.08 77.74 38.87

C.  Pure Compression, Z, under Hydrostatic Pressure, P

23  0.00  -84.25 0.00  0.00  0.00 -84.25 -84.25 84.25 84.25 42.13
24  0.00  -90.00 0.00  0.00  0.00 -90.00 -90.00 90.00 90.00 45.00

* 1 ksi = 6.895 MPa.



22

4.1.4  H2P Model Parameter “b”
The mathematical expression for the H2P failure model (Eq. 3.7) identically fits the uniaxial

tensile failure point and also incorporates model parameter “b” that can be determined such
that the model fits another arbitrary point in triaxial stress/failure space.  Material strengths for
Data Set 1 (Eqs. 4.13) provide a basis for determining  parameter “b” using either the results of a
pure torsion failure test at zero hydrostatic pressure or a pure compression failure test at zero
hydrostatic pressure.  It is then possible to determine which of these two test types results in the
better correlation of the total data set in Table 4.4.

From Eqs. 3.15 and 3.23 and the cast-iron material strengths in Eqs. 4.13, the following
values are determined for parameter “b”:

Basis Parameter “b” H2P Failure Model
Compression Test 0.592 Eq. 3.7
Torsion Test 0.687 Eq. 3.7

4.1.5 Data Set 1: Model / Data Correlations
Stress equations from Table 4.3, material strengths from Eq. 4.13, and selected failure

models are utilized to predict failure for each of the tests in Data Set 1.  The results are
compared to the observed failures in this report section.

For each test in Data Set 1, the predicted value of the applied stress loading at fracture is
determined by equating the equivalent stress intensity, se , for each failure model to the
material tensile strength, s0.  Equivalent stress intensities were previously defined by Eqs. 2.4
(Tresca), 2.5 (Mises), 2.6 (Rankine), and 3.7 (H2P).  These predictions are not described in detail;
however, as an example, consider the case of pure torsion under hydrostatic pressure with
failure predicted using the Mises model.  Expressions for the principal stresses for this case
were previously summarized in Table 4.3.  Equating the expression for 

† 

s  from Table 4.3 for
combined torsion and hydrostatic pressure to the tensile strength, s0 , results in a predicted
torsion stress at fracture of

  

† 

W =
s0

3
(4.14)

Predicting the applied stress at fracture for pure tension and pure torsion under
hydrostatic pressure using the Mises, Tresca, and Rankine models for each of the three loading
conditions is done in an analogous manner.  These predictions result in simple, closed-form
equations that can be solved easily for tensile stress, Z, or torsion stress, W.  The H2P model
requires a bit more work as the resulting equation cannot be solved directly for Z or W.  It is
necessary to solve the equation numerically.   For the case of pure torsion under pressure, when
the expression in the H2P model for equivalent stress (Eq. 3.7) is equated to the material tensile
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strength, s0 ,  the resulting equation for predicting the torsion stress, W, at fracture knowing P
and s0 is:

  

† 

s0 - W 3 exp b 3P
2W2 + 3P2

-1
Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 
= 0 (4.15)

where the numerical value of the parameter “b” in Eq. 4.15 can be based on choosing either the
pure compression or the pure torsion point as the reference.  The expressions for “b,” for
uniaxial compression or pure torsion as the references, are given by Eqs. 3.15 and 3.23,
respectively.  The equations analogous to Eq. 4.15 for tension and compression under
hydrostatic pressure are given in Table 4.5.  After the calculated value of “b” is entered into the
appropriate equation and a value of P is chosen, the value of Z or W can be calculated
numerically by using a root solver.

By using the method described, equations for predicting the applied stress necessary to
produce fracture based on the Mises, Tresca, Rankine, and H2P models for all tests in Data Set 1
are developed and are summarized in Table 4.5.  These equations, in conjunction with the three
material strength values (Eqs. 4.13), are used to predict fracture for all Data Set 1 tests.  These
results are summarized in Table 4.6 and in Figs. 4.2 through 4.5. Two different values were
previously determined for parameter “b” in the H2P model, 0.592 when the model is
constrained to identically fit the pure compression point, and 0.687 when it is constrained to
identically fit the pure torsion point. Results for b = 0.592 are summarized in Figs. 4.2 and 4.3
with results for b!=!0.687 summarized in Figs. 4.4 and 4.5.  Three significant conclusions are
drawn from these correlations:

1. For this cast-iron material, the classical models of Mises, Tresca, and Rankine provide
poor predictions of both the data trend and the numerical values.

2. For this cast-iron material, the H2P model more accurately predicts the fracture trend
as well as the numerical value of the stress loads at fracture as compared to the
classical models.

3. For these data, H2P model parameter “b,” when it is based on the pure compression
test, results in more accurate fracture predictions than when based on the pure torsion
test.
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Table 4.5. Equations for predicting the applied stress necessary to produce fracture based
on the Mises, Tresca, Rankine, and H2P failure models.

Failure Model Fracture Prediction Equation

A.  Pure Torsion under Hydrostatic Pressure

Mises W =
  

† 

s0
3

Tresca W = s0/2

Rankine W = s0 –P

H2P s0 =

  

† 

W 3 exp b 3P
2W2 + 3P2

-1
Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

(Input s0 and P, and then solve numerically for predicted torsion stress, W, at fracture)

B.  Pure Tension under Hydrostatic Pressure
Mises Z = s0

Tresca Z = s0

Rankine Z = s0 –P

H2P s0 =

  

† 

Z exp b Z + 3P
Z2 + 2PZ + 3P2

-1
Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

(Input s0 and P, and then solve numerically for predicted tensile stress, Z, at fracture)

C.  Pure Compression under Hydrostatic Pressure
Mises Z = –s0

Tresca Z = –s0

Rankine Z = s0c –P where P<0 and s0c <0

H2P s0 =

  

† 

Z  exp b Z + 3P
Z2 + 2PZ + 3P2

-1
Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

(Input s0 and  P, and then solve numerically for predicted compression stress, Z, at fracture)
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Table 4.6. Data Set 1:  comparison of predicted and observed fracture stress.

Predicted Stress (Z or W) at Fracture (ksi)*
Test

Observed
Stress at
Fracture*

(ksi)
Mises Tresca Rankine H2P**

(b=0.592)
H2P***

(b=0.687)

A.  Pure Torsion under Hydrostatic Pressure
1  30.60 15.40 13.33 26.67 27.83 30.60
2  34.59 15.40 13.33 34.59 36.27 40.41
3  38.56 15.40 13.33 42.76 42.75 48.07
4  45.45 15.40 13.33 58.83 51.78 59.18
5  47.09 15.40 13.33 74.65 57.80 67.05
6  49.20 15.40 13.33 86.67 61.19 71.72
7  50.72 15.40 13.33 96.65 63.45 74.96
B.  Pure Tension under Hydrostatic Pressure

8  26.67  26.67  26.67 26.67 26.67 26.67
9  31.75  26.67  26.67 36.21 39.59 41.23

10  43.79  26.67  26.67 46.15 52.40 55.47
11  57.61  26.67  26.67 56.56 63.88 68.42
12  51.97  26.67  26.67 66.41 73.15 79.16
13  58.91  26.67  26.67 76.76 81.51 89.12
14  62.70  26.67  26.67 86.59 88.33 97.51
15  66.69  26.67  26.67 96.61 94.32  105.15
16  55.95  26.67  26.67 106.34 99.33  111.78
17  61.69  26.67  26.67 113.92 102.75  116.47
18  105.64  26.67  26.67 136.34 110.84  128.21
19  74.14  26.67  26.67 126.37 107.58  123.35
20  68.64  26.67  26.67 126.65 107.68  123.49
21  113.36  26.67  26.67 146.43 113.67  132.60
22  77.74  26.67  26.67 136.80 110.98  128.42

C.   Pure Compression
23 –84.25 -26.67 -26.67  -87.12  -87.12 –105.37
24 –90.00 -26.67 -26.67  -87.12  -87.12 –105.37

* Stress loading (Z for tensile or compressive tests; W for torsion tests).
1 ksi = 6.895 MPa.

** H2P model identically fitting pure compression point.
***H2P model identically fitting pure torsion point.
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Figure 4.2. Comparison of predicted and observed tensile stress, Z, at fracture for tests of cast iron
conducted under combined axial tension, Z, and hydrostatic pressure, P (H2P model
parameter “b” determined by pure compression tests).

Figure 4.3. Comparison of predicted and observed torsional stress, W, at fracture for tests of cast iron
conducted under combined torsion, W, and hydrostatic pressure, P (H2P model
parameter “b” determined by pure compression tests).
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Figure 4.4. Comparison of predicted and observed tensile stress, Z, at fracture for tests of cast iron
conducted under combined tension, Z, and hydrostatic pressure, P (H2P model parameter
“b” determined by a pure torsion test).

Figure 4.5. Comparison of predicted and observed torsional stress, W, at fracture for tests of cast
iron!conducted under combined torsion, W, and hydrostatic pressure, P (H2P model
parameter “b” determined by a pure torsion test).
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4.2 DATA SET 2 CORRELATIONS - CHANDLER AND MAIR TENSION AND
COMPRESSION TESTS OF CAST IRON UNDER HYDROSTATIC
PRESSURE

In 1967, Chandler7 reported results of his investigation of cylindrical cast-iron specimens
tested to fracture under a triaxial stress state consisting of a pure compression stress plus a
hydrostatic pressure.  Chandler and Mair,8 also in 1967, reported similar results for cast-iron
specimens tested under pure tension and hydrostatic pressure and under pure compression and
hydrostatic pressure.  Both sets of results are summarized in Fig. 25.7 of Chandler and Mair8 in
the form of a plot.  In order to utilize these data in the current investigation, it is necessary to
scale Chandler and Mair’s plot and to develop a numerical data set from which to work.  This
report section, therefore, includes sections covering scaling of Chandler and Mair’s plot,
converting the resulting values into specimen stress parameters, determining material fracture
strength values from the data, determining parameter “b” in the H2P failure model, predicting
the applied stress loading at fracture based on the H2P failure model with similar predictions
for the classical failure models, and finally comparing the predicted fracture stress/loads to the
experimentally observed values.

4.2.1 Scaling Data Set 2
Chandler and Mair8 reported their results in plotted format, plotting “Maximum Normal

Stress” versus “Volumetric Stress.”  Their plot is scaled in the current investigation to obtain the
working data set summarized in Table 4.7 and the curves shown in Fig 4.6.  Small differences
between these scaled values and the original data should not significantly alter the results or
conclusions in the current assessment.

Chandler and Mairs’ plot parameters, “maximum normal stress” and “volumetric stress,”
are interpreted as follows:

Z   = applied tensile or applied compressive stress (force/area, with Z > 0 for
tension and Z < 0 for compression)

P    = applied hydrostatic pressure

s1, s2, s3 = principal stresses ordered s1 ≥  s2  ≥ s3

J1 = (s1 +  s2 +  s3) (4.16)

scv = -J1/3 = volumetric compression stress (4.17)

sv = -scv = volumetric stress (4.18)

 (c,d) = scaled values [i.e., Table 4.7 numerical values for (s cv ,  s max)
for an individual test where smax = Z+P

These definitions are consistent with the definitions applied in Section 4.1.1, hence
Eqs.!4.1!- 4.8 are utilized to convert the scaled values of maximum normal stress and volumetric
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stress in Table 4.7 into the applied stress loadings, Z and P.  These values are also given in
Table!4.7.  These applied loadings are utilized to compute the specimen stress parameter values
needed to utilize selected failure models for predicting fracture for all tests in Data Set 2.

Table 4.7. Data Set 2: Chandler and Mair fracture results for cylindrical, cast-iron
specimens tested under combined tension or compression and
hydrostatic pressure.

Test
No.

Volumetric
Stress (scv)

(ksi)*

Maximum
Normal Stress

(Z + P)
(ksi)

Applied Stress
(Z) at Fracture

(ksi)

Hydrostatic
Pressure (P)

(ksi)

A.  Pure Tension under Hydrostatic Pressure
1 -2.418 28.849 -18.051 46.900
2 -4.836 24.485 -19.497 43.982
3 -8.947 29.334  -28.087 57.421
4 -16.442 27.879 -38.603 66.482
5 -16.442 24.485  -36.906 61.392
6 -29.982 22.061  -56.005 78.066
7 -28.774 20.122  -53.222 73.344
8 -45.217 13.819  -74.734 88.553
9 -48.602 5.576 -75.691 81.267

10 -57.307  10.425 -91.172 101.597
11 -64.802 -8.969 -92.719 83.750
12 -75.200 -3.636  -110.982 107.346
13 -77.376 -2.666 -114.731  112.065
14 -91.642 -3.151  -135.888 132.737
15 -94.060 -9.939  -136.121 126.182
16 -98.896 -29.818  -133.435 103.617
17 -104.699 -38.060  -138.019  99.959

B.  Pure Compression under Hydrostatic Pressure
18 -29.016  0.000 -87.048  0.000
19 -52.712 -20.000 -98.137 -20.000
20 -73.024 -40.000 -99.071 -40.000
21 -86.323 -50.000 -108.968 -50.000
22 -117.273 -80.000 -111.819 -80.000
23 -137.826 -100.000 -113.478 -100.000

*  1 ksi = 6.895 MPa.

4.2.2 Principal Stresses and Stress Parameters
Equations for converting applied stress loadings, Z and P, into specimen stresses were

previously developed and summarized in Table 4.3.  These equations are utilized, in
conjunction with the loadings in Table 4.7, to compute relevant stress values for the Chandler
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and Mair8 tests.  In the interest of brevity, the author has dispensed with including these details
in this report because they can easily be determined from the information already given.

Figure 4.6. Maximum normal stress versus volumetric stress for cylindrical, cast-iron specimens
tested under combined tension or compression and hydrostatic pressure (Sources:
Chandler7, and Chandler and Mair8).

4.2.3 Material Strength Properties
The compressive strength of the cast-iron material utilized in Chandler and Mairs’ tests is

determined from Test 18 in Table 4.7, as –87.048 ksi (–600.2 MPa).  There are no pure tensile
tests reported by Chandler and Mair; thus, the tensile strength cannot be directly determined
from their data.  However, the first five tests in Table 4.7 plot a near straight line.  A linear
regression fit to these five points is performed and the regression equation extrapolated to zero
hydrostatic pressure.  This results in a tensile fracture strength of 27.78 ksi (191.5 MPa).  The
resulting tensile and compressive fracture strengths determined for the cast-iron material are,
therefore:

so = 27.78 ksi (191.5 MPa ) (4.19)

soc = –87.05 ksi (600.2 MPa )

4.2.4 H2P  Model Parameter “b”
An equation for determining parameter “b” for the H2P failure model was previously

developed (Eq.!3.15) based on the model identically fitting the pure compression failure point at
zero hydrostatic pressure.  When Eq. 3.15 is utilized in conjunction with the material strengths
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from Eqs.!4.19, the resulting value for parameter “b” for Chandler and Mair’s cast-iron material
becomes:

b = 0.5711 (4.20)

One now has all the necessary analytical tools for predicting the applied tensile or
compression loading, Z, for Chandler and Mair’s tests under hydrostatic pressure, P.

4.2.5 Data Set 2:! Model / Data Correlations
Equations for predicting the applied stress loading required to produce fracture under a

given hydrostatic pressure were previously developed and were summarized in Table 4.5.
These equations are utilized for predicting fracture for all Data Set 2 tests.  These results are
compared to the observed fracture results in Figs. 4.7 and 4.8 for the tensile and compressive
tests, respectively.  The classical models of Mises and Tresca each demonstrate poor predictions
for both the tensile and compressive tests under hydrostatic pressure.  The Rankine model
demonstrates somewhat better predictions for the tensile tests  under pressure although its
linear prediction trend with increasing hydrostatic pressure does not match the data trend.  The
Rankine model provides poor predictions for the compression tests under hydrostatic pressure,
as shown in Fig. 4.8.  The H2P model demonstrates excellent predictions for both the tensile and
compression tests under hydrostatic pressure.

4.3 DATA SET 3 CORRELATIONS—VON KARMAN TENSION AND
COMPRESSION TESTS  OF MARBLE UNDER HYDROSTATIC PRESSURE

T. von Karman*in  1911 investigated the effect of hydrostatic pressure on the compressive
strength of cylindrical specimens of marble.  His results were summarized by Nadai 9 in
Fig.!17-1 of his 1950 book entitled Theory of Flow and Fracture of Solids.  The H2P failure model
and the classical models of Mises, Tresca, and Rankine are utilized in the current work to
predict the applied stress load at failure for each of von Karman’s tests.  The results are then
compared to the experimentally observed failure stress values. Nadai published von Karman’s
data in the form of a plot of “(s1 – s2)” versus “Unit Compression.”  Nadai, however, utilized a
different definition for these parameters than what has been used in this report.  In order to
utilize von Karman’s data in the current work, it is necessary to scale Nadai’s plot, then convert
the data to the nomenclature that has been adopted in this report, thus providing a working
data set for the current analyses.  This section, therefore, covers scaling of Nadai’s plot,
converting the scaled values to the nomenclature adopted in this report and then into the stress
parameters needed by specific failure models, determining the material strength properties,
determining parameter “b” for the H2P failure model, and finally predicting the applied stress
loading for each of von Karman’s tests and comparing these to the observed data.

                                                       
*Forschungsheft 118, and Z. Ver. Deut. Ing., 1911.
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Figure 4.7. Comparison of predicted and observed tensile stress, Z, at fracture for cylindrical,
cast-iron specimens tested under combined tension, Z, and hydrostatic pressure, P
(H2P model parameter “b” determined by pure compression test).

Figure 4.8. Comparison of predicted and observed compressoion stress, Z, at fracture for cylindrical,
cast-iron specimens tested under combined compression, Z, and hydrostatic pressure, P
(H2P model parameter “b” determined by compression test).
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4.3.1 Scaling Data Set 3
Von Karman’s data, as published by Nadai9, are reproduced in Fig. 4.9.  The data are

plotted as (s1 – s2) versus Unit Compression (%) where s1 , s 2 , and  s3 denote the principal
stresses and Unit Compression denotes the strain along the cylindrical specimen axis (i.e., along
s1 direction).   When the applied axial stress is defined as Z and the hydrostatic pressure as P,
the abscissa and ordinate of Nadai’s plot can be described as follows.  Principal stresses s1 , s2 ,
and s3 correspond to the cylindrical coordinates sz , s r , and  sq .  In terms of the applied
loadings, the principal stresses for the cylindrical specimen in Nadai’s nomenclature become:

 s1 = sz = Z+P, (4.21)

  s2 = sr = P, (4.22)

and

  s3 =  sq = P (4.23)

Nadai’s plot axes are then:

abscissa: Unit Compression (%) = Œ1 =  Œz

ordinate : (s1 – s2) = (sz – sr ) = Z

Figure 4.9. T. von Karman failure tests of marble cylinders under combined axial compression and
hydrostatic pressure (Source: Nadai9).
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In order to be consistent with the nomenclature adopted in the current report, the scaled
data are converted to the following nomenclature for further use in this report:

s1 , s2 , s3 correspond to the cylindrical coordinates  sq , sr , sz  where   s1 ≥  s2 ≥ s3.

 s1 =  sq = P (4.24)

  s2 =  sr = P (4.25)

s3 =  sz  = Z + P (4.26)

abscissa: Unit Compression (%) = Œ3 =  Œz

ordinate : (s1 – s3) = (sq – sz ) = –Z

Nadai’s plot, therefore, shows the absolute value of the applied axial stress, Z, versus the
axial strain Œ3 (or Œz ) , and Eqs. 4.5 – 4.8, Section 4.1.1, are now valid and are used for scaling
Nadai’s plot.

In scaling Nadai’s plot, it is necessary to define failure in each test.  Some of the
tests/curves result in fracture of the specimen after it reaches its maximum value and
unloading begins.  In other tests conducted at higher values of hydrostatic pressure, the curves
do not bend over before fracture.  In the case of the two curves at the two highest test pressures,
the curves terminate when they reach the top of the plot.  One is unable to determine if fracture
occurs at that point or whether Nadai9 (or von Karman) omitted the end of the curve.
Differences in the curves thus make it difficult to define fracture on a consistent, objective basis.
One cannot define failure as the maximum point on each curve or as the end point on each
curve with any degree of certainty.  This author, therefore, chose to use a 0.45% strain offset
method to define failure in each test.  The method is the same as that used to determine the 0.2%
yield stress in conventional laboratory tensile and compression tests.  Several different values of
offset were considered.  In the end, the choice of 0.45%, which was a subjective choice on the
author’s part, was easiest to implement and gave some consistency in where the offset modulus
line crossed each curve, determining the failure point.  The resulting data are summarized in
Table 4.8.

4.3.2 Principal Stresses and Stress Parameters
Equations for determining principal stresses and stress parameters needed for predicting

failure by the selected failure models were previously developed and summarized in Table 4.3.
Details of these calculations are omitted in the interest of brevity as they can easily be
reproduced from the information that has been provided.
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Table 4.8. Applied loadings at “failure” for cylindrical specimens
of marble tested under combined axial compression, Z,
and hydrostatic pressure, P, by T. von Karman (In
Nadai9).

Applied Loadings at “Failure” (ksi)*Test
No. Compression Stress,**

Z = s3 –  s1
Hydrostatic Pressure

(P)

1 –19.62   0.000
2 –29.23 –3.454
3 –35.59 –7.348
4 –37.62 –10.067
5 –39.78 –12.418
6 –45.60 –24.248
7 –48.04 –36.593
8 –50.61 –47.909

*   1 ksi = 6.895 MPa.
** Failure determined by 0.45% strain offset method.

4.3.3 Material Strength Properties and H2P Model Parameter “b”
Von Karman conducted one compression test under zero hydrostatic pressure (Test 1).

This result determines the compression strength, soc , as –19.62 ksi (–135.3 MPa).  There are no
tensile tests conducted at zero hydrostatic pressure from which to determine tensile strength,
so.  One option for estimating the tensile strength from von Karman’s data is to correlate the
total data set based on the H2P failure model determining the value of model parameter “b”
such that it gives the best model fit to von Karman’s data (i.e., determine the value of parameter
“b” that minimizes the sum of the squared deviations between predicted and observed
compression stress, Z, at failure).  After determining a value for parameter “b,” the tensile
strength of the marble material is determined from Eq. 3.15 and the material compressive
strength. The method described is utilized to determine the value of “b” and then to estimate
the tensile strength of the marble material tested by von Karman.  The resulting value of “b” is
1.58 with the tensile strength being 0.832 ksi (5.7 MPa).   A tensile strength of this magnitude
appears to be a very reasonable value for marble, which is a brittle material with a low tensile
and a high compressive strength.

The strength values for marble as utilized in the  assessment of von Karman’s data are
therefore:

so  =    0.832 ksi (5.7 MPa ) 
(4.27)

soc =   –19.62 ksi (–135.3 MPa)
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The corresponding value of parameter “b” for the H2P failure model is:

b = 1.58 (4.28)

4.3.4 Data Set 3:  Model / Data Correlations
Equations for predicting failure by selected failure models given material strengths and

applied loadings, Z and P, were developed in Section 4.1, and are summarized in Table 4.5.
These equations are utilized for predicting failure for all of the von Karman tests.  The results
are summarized in Fig. 4.10.  For the von Karman marble data, the H2P failure model provides
excellent predictions of both the data trend and the failure stresses.  The classical models
provide poor predictions for these data.  This finding is consistent with the findings for the Data
Set 2 compression tests of cast iron.

Figure 4.10. Comparison of predicted and observed axial stress, Z, at fracture for marble cylinders
tested under combined compression, Z, and hydrostatic pressure, P (H2P model
parameter “b” determined by pure compression test).

4.4 DATA SET 4 CORRELATIONS—CHUBB AND BOLTON BIAXIAL CREEP-
RUPTURE TESTS OF TYPE 316 STAINLESS STEEL

The H2P failure model was initially developed and applied to improve life predictions in
nuclear reactor components operating in the elevated-temperature, creep-rupture region.
Correlation of biaxial creep-rupture data for three different alloy steels, Types 304 and 316
stainless steels (SS) and Inconel 600, resulted in 2–3 orders of magnitude reduction in the scatter
between predicted and observed lives. Results for one material, Type 316 stainless steel, are
summarized in this report section to demonstrate application of the model for predicting
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creep-rupture and to demonstrate the type of results that have been achieved.  The reader is
referred to References 2, 4, and 5 for the balance of these results for the three alloy steels noted
above.  In order to demonstrate the applicability of the H2P failure model for predicting stress
rupture, the Type!316 stainless-steel biaxial stress-rupture data and correlations are provided in
the current report.  The methodology utilized for predicting stress-rupture is summarized, and
predicted specimen lives are compared to the observed lives based on the H2P and classical
models.

4.4.1 Biaxial Creep-Rupture Data
Chubb and Bolton10 investigated creep-rupture in Type 316 stainless-steel specimens at

1112°F (600°C) using two specimen types: (1) a solid bar specimen loaded by combined axial
tension and torsion; and (2) a tubular specimen loaded with internal pressure and axial tension.
Chubb and Bolton’s data are summarized in Table 4.9. These data provide the basis for the
failure model assessments described in this section.

Table 4.9. Data Set 4: biaxial creep-rupture of annealed Type 316 stainless-steel cylindrical
specimens tested at 1112°F (600°C) in air by Chubb and Bolton10.

Test
No.

Biaxial
Stress
Ratio

sx

(ksi)*

sy

(ksi)*

sz

(ksi)*

Tr

(h)

Specimen
Loading
Mode**

  1   2.0 18.389 36.776   –0.450   480 P
  2   2.0 16.447 32.891   –0.402 2376 P
  3   1.0 27.534 27.434   –0.389 2522 Z+P
  4   1.0 23.510 23.510   –0.332 7000 Z+P
  5   0.5 31.669 15.835   –0.225   327 Z+P
  6   0.5 31.669 15.835   –0.225 1208 Z+P
  7   0.0 27.556   0.000    0.000 3141 Z
  8  –0.5 25.584   0.000 –12.685 1036 Z+W
  9  –0.5 21.337   0.000 –10.587 5839 Z+W
10  –1.0 19.485   0.000 –19.485 2700 W
11  –1.0 19.485   0.000 –19.485 2928 W
12  –1.0 22.492    0.000 –22.492 1121 W
13  –1.0 18.422   0.000 –18.422 4488 W
14  –1.0 18.422    0.000 –18.422 4680 W

* 1 ksi = 6.895 MPa.
**P (internal pressure).
   Z   (axial tension)
   W (torsion).

To use the individual biaxial data in Table 4.9 to objectively assess stress state effects, the
effects of material and testing variability are minimized.  To do this, an “averaged biaxial data
set” is created from the data in Table 4.9.  This is accomplished by linearly averaging, in
log(stress) versus log(rupture time) space, each subset of the biaxial data having the same stress
state (i.e., the same biaxial stress ratio).  This reduces the data in Table 4.9 to the six data
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summarized in Table 4.10 with only one representative average data point for each independent
stress state.

Table 4.10. Data Set 4: averaged  biaxial creep-rupture data of annealed Type 316
stainless-steel cylindrical specimens tested at 1112°F (600°C) in air by
Chubb and Bolton10.

Biaxial
Stress
Ratio

sx

(ksi)*

sy

(ksi)*

sz

(ksi)*

Tr

(h)

Specimen
Loading

Mode
  2.0 17.389 34.777   –0.425 1068 P
  1.0 25.443 25.443   –0.360 4202 Z+P
  0.5 31.669 15.835   –0.225   629 Z+P
  0.0 27.492   0.000    0.000 1958 Z
 –0.5 23.365   0.000  –11.561 2460 Z+W
 –1.0 19.607   0.000  –19.607 2844 W

* 1 ksi = 6.895 MPa.

4.4.2 Methodology for Predicting Creep-Rupture
Given the stationary stress state, sij , and operating temperature, T1 , for a structural

component, two additional elements are required for predicting creep-rupture: (1) a failure
model and (2) a baseline uniaxial creep-rupture correlation.  The classical failure models and the
H2P model are described in Section 2.0 by Eqs. 2.4 – 2.6 and Eq. 3.7, respectively.  It is assumed
that the baseline uniaxial creep-rupture correlation for a specific temperature, T1 , is expressed
by the normal equation:

Tr =  gsh (4.29)

where:

Tr =  rupture time

s =  uniaxial stress

g, h =  material constants

Rupture time under a complex triaxial stress state is then predicted by the equation:

Tr =    

† 

gse
h (4.30)
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4.4.3 Data Set 5:  Data / Model Correlations
Results of the assessment of the H2P and the classical failure models based on the data in

Table!4.10 are summarized in two forms: (1) a two-dimensional (2-D) biaxial isochronous stress-
rupture contour, and (2) a polar plot showing deviations between predicted and observed
specimen lives as a function of stress state.  The polar plot is a convenient means to show which
stress states result in the best and the worst life predictions.  Parameter “b” for the H2P failure
model (Eq. 3.7) is determined by a least-squares fit of the model to the data in Table 4.10 with
the resulting value being 0.1893.  It should be noted that “b” for the three materials evaluated to
date (Types 304 and 316 stainless steels and Inconel 600) demonstrates a somewhat universal
value4 of about 0.24 for predicting creep-rupture in these alloy steels.  The value of 0.1893 was,
however, utilized in the current assessments.  By comparison, the value of “b” determined from
Eq. 3.23 and the tension and torsion tests in Table 4.10 is 0.211.

Biaxial isochronous stress rupture contours (contour based on a constant rupture time, Tr,
and a constant value of equivalent stress, se) for the four failure models evaluated are shown in
Fig.!4.11.  One can see that the H2P model describes the data much better than do the classical
models, particularly in the second and fourth quadrants where tension-compression stress
states exist.

Figure 4.11. Correlation of Type 316 stainless-steel biaxial stress-
rupture data with 2-D isochronous stress-rupture
contours.
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For creep-rupture tests under biaxial stress states, polar plots provide an excellent means
for displaying deviations between predicted and observed life as a function of the biaxial stress
state.  Plots of this type are developed and are shown in Figs. 4.12 through 4.15 for the failure
models that were evaluated.  In these plots the ratio of predicted-to-observed rupture time is
plotted radially in logarithmic scale with the plot axes and angle mapping the principal stress
axes in the specimen wall.  For each biaxial test, the tangent of the angle, q , in the polar plot is
defined by the biaxial stress ratio for the specific test.  If a failure model is perfect (i.e., exactly
predicts failure at all stress states) the data will fall around a circle of radius 1.0 [i.e., Log(100)].
If a data point falls radially outside this circle, life is over-predicted.  Similarly, if a point falls
inside this circle, life is under-predicted.  A circle labeled as "SM-20" (observed life is 20 times
predicted life) is placed on the plot as a base of reference and denotes a safety margin of 20 on
life (the approximate ASME CCN47, Appendix T, safety margin).3  Similarly, a circle labeled
OCM-5 (observed life is 1/5 predicted life) is placed on each plot as a second base of reference
and denotes an arbitrarily assigned margin of 5 on life indicating the possibility of  over-design.

In comparing the polar plot results, the H2P model (Fig. 4.12) provides the best predictions
for these data with the greatest deviations occurring for two tension-tension (T-T) stress states.
Both the Mises (Fig.!4.13) and the Tresca (Fig. 4.14) models result in highly conservative life
predictions for biaxial tension-compression (T-C) stress states.  The Rankine model (Fig. 4.15)
results in significant life over- predictions under T-C stress states, and for some T-C stress states
predictions exceed a safety margin of 20.

The trends observed in the Type 316 stainless-steel biaxial tests and failure model
assessments are very similar to those observed for Types 304 stainless steel2 and Inconel 600.5  In
addition, parameter “b” in the H2P failure model has similar values for these three alloy steels
(0.29 for Type 304 SS, 0.19 for Type 316 SS, and 0.25 for Inconel 600).  A universal value of 0.24
has been evaluated previously by the author (Refs.!2 and 4), and it provides predictions
significantly better than the classical failure models for these three alloy steels.  This universal
value of “b” is anticipated to result in significantly improved life predictions for other similar
alloy steels.

4.5 CREEP-FATIGUE LIFE PREDICTION METHODOLOGY
This report section summarizes a proposed change to the current, linear-damage-based,

life-prediction methodology utilized by ASME Code Case N473 for design of structures
operating at elevated temperature under cyclic creep-fatigue conditions. The current design
method incorporates (1) a linear time and cycle fraction damage model; (2) a bilinear creep-
fatigue damage interaction diagram that limits total damage; and (3) the Mises equivalent stress
model to accommodate triaxial stresses.  The proposed change appears to have the potential to
improve the accuracy of life predictions, particularly where creep damage occurs under
compressive stress states.
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Figure 4.12. Correlation of the ratio of predicted-to-observed life with stress state based on the H2P
failure model.

Figure 4.13. Correlation of the ratio of predicted-to-observed life with stress state based on the Mises
failure model.
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Figure 4.14. Correlation of the ratio of predicted-to-observed life with stress state based
on theTresca failure model.

Figure 4.15. Correlation of the ratio of predicted-to-observed life with stress state based on the
Rankine failure model.
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The proposed change to the existing design methodology incorporates the conventional
linear damage model as well as the bilinear creep-fatigue interaction diagram, but it replaces
the conventional Mises equivalent stress model with the H2P equivalent stress model.  As
previously noted, the H2P model has been shown to significantly improve creep-rupture life
predictions and has been incorporated into the ASME Code3 for design of structures operating
under creep-rupture conditions.  The author believes the model may also have the potential to
significantly improve creep-fatigue life predictions, particularly where stress relaxation occurs
under compressive stresses.  The life of materials tested under creep-fatigue conditions can
differ considerably for stress-strain cycles with a tensile versus a compressive strain hold period
(i.e., creep damage accumulation under tensile or relaxing tensile stress rather than under
compressive or relaxing compressive stress).  The current life-prediction methodology cannot
distinguish between creep damage under tensile versus compressive stress states.

In the balance of this section, the elements of the existing design methodology are
reviewed, the author’s proposed change is detailed, the equations for implementing the change
are detailed, and finally a set of four creep-fatigue tests representing two different hypothetical
materials is used to illustrate how the methodology might improve life predictions.  It is not the
intent in this report to do an in-depth evaluation of the proposed methodology because most of
the existing creep-fatigue data are proprietary or are restricted relative to publication in the
open literature.  The objective in this report is to present the proposed methodology and then
allow others who have access to a greater body of experimental data and who are actively
engaged in creep-fatigue research and development (R&D) to further evaluate the methodology

4.5.1 Current Methodology
As previously noted, the current design methodology  incorporates three key elements:  a

damage accumulation model, a creep-fatigue interaction diagram to limit total damage, and an
equivalent stress model to accommodate triaxial stresses.  These elements are described in the
sections that follow.

4.5.1.1 Linear Damage Model
The well-known linear damage model is based on the theory that time-under-stress results

in linear accumulation of creep damage with the increments of creep damage incurred under
varying loads being linearly additive.  Fatigue damage is assumed to accumulate linearly with
numbers of cycles, and increments of fatigue damage incurred under varying cyclic conditions
are also linearly additive.  The total damage is taken as the linear sum of the creep and fatigue
damage sums.  The Mises failure model (Mises equivalent stress) is used in these analyses to
accommodate triaxial stresses.  The linear damage model can be expressed as

D =
  

† 

n
Nd

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

j
+

dt
Tr
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Â
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p
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k

(4.31)

Dn + Dc
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where:

D = total creep-fatigue damage
Dn = total fatigue damage
Dc = total creep damage
n = number of applied cycles of loading condition  j
Nd = number of fatigue cycles to failure under loading condition  j
q = number of different time intervals with unique stress-temperature

combinations required to represent the specified loading history
dt = time duration of loading condition  k
Tr = creep-rupture time under loading condition  k
p = number of different cyclic loading conditions with unique strain range-

temperature combinations required to represent the specified loading
history.

Current ASME Code Case N47 Rules3 use a modified form of the linear damage model as
shown in Figure 4.16.  By placing a “knee” at the location where Dn = Dc, a bilinear creep-
fatigue interaction diagram is formed.  A design point must fall on or below the bilinear line.
By moving the knee below the (0.5, 0.5) point, one can reduce the allowable damage.  The
location of the knee is material dependent in the code.

Figure 4.16.  Bilinear creep-fatigue interaction diagram.
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4.5.1.2  Mises Equivalent Stress Model
In the current design methodology, triaxial stress states are accommodated using the Mises

equivalent stress model.  Given a general stress state with principal stresses (s1 ,  s2 , s3 ), the
Mises equivalent stress is defined by the equation

se = 
  

† 

s = s1 = s2( )2
+ s2 = s3( )2

+ s3 = s1( )2È 
Î Í 

˘ 
˚ ˙ /2 (4.32)

4.5.1.3  Bilinear Creep-Fatigue Damage Interaction Diagram
In the current ASME code design methodology,3 total creep-fatigue damage is limited by a

bilinear diagram depicted in Fig. 4.16.  Current ASME Code Rules define the knee in the bilinear
diagram  [point (F,F)]  at a different location for different materials, these values being3:

Material                                                                          Knee (F,F)
2 1/4 Cr-1 Mo Steel (0.1, 0.1)
Types 304 & 316 Stainless Steels (0.3, 0.3)
Ni-Fe-Cr Alloy 800H (0.5, 0.5)

4.5.2 Proposed Modification to Creep-Fatigue Life-Prediction Methodology
By replacing the Mises equivalent stress model in the current creep-fatigue life prediction

methodology with the new H2P model, it appears that one can improve the ability of the
methodology to predict life, particularly as it relates to creep damage accumulation under
relaxing compressive stresses.  Some materials, such as the austenitic stainless steels, tend to fail
under creep-fatigue conditions by an inter-granular cracking mechanism with a tensile strain
hold cycle (denoted as TEH cycle) being more damaging than a compressive strain hold cycle
(denoted as CEH cycle) (i.e., when tested at the same temperature and total strain range,
introducing a hold period at maximum strain [producing a relaxing tensile stress as shown in
Figs. 4.17 a and b]  results in a shorter life than when the same hold period is introduced at
minimum strain [producing a relaxing compressive stress, as shown in Figs. 4.17 c and d]).
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Figure 4.17.  Cyclic stress-strain behavior for TEH and CEH cycles.
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Other materials, such as 2!1/4 Cr-1 Mo steel, when tested in air, tend to fail as a result of surface
oxide cracking with the failure mechanism in general being trans-granular.  For 2 1/4-Cr-1 Mo
steel, the CEH cycle is more damaging than the TEH cycle.  Using the existing design
methodology results in equal life predictions for CEH and TEH cycles (i.e., given the same
stress relaxation curve during the hold period).  Replacing the Mises equivalent stress with the
H2P equivalent stress allows the design methodology to more correctly predict life under CEH
cycles.

For a given material, using the proposed methodology, one can determine point (F,F) on
the bilinear interaction diagram from a minimum of one TEH test.  One can likewise determine
parameter “b” in the H2P model using a minimum of one CEH test.  The observed lives for
these two tests are then exactly predicted using the H2P model.  However, considering the
variability in creep-fatigue data, one can and should determine more appropriate values for
(F,F) and “b” from a set of several TEH and several CEH tests.  Determining (F,F) and “b” from
multiple TEH and CEH data can easily be accomplished using a least-squares fitting approach.

Briefly stated, the proposed method includes the following:

1. Point (F,F) in the bilinear creep-fatigue interaction diagram (Fig. 4.16) is determined
from uniaxial TEH creep-fatigue data.

2.  The H2P equivalent stress model replaces the Mises equivalent stress.

3. Parameter “b” in the H2P equivalent stress model is determined from uniaxial CEH
creep-fatigue data.

4. The linear damage model, the bilinear creep-fatigue interaction diagram, and the H2P
equivalent stress model are used to predict creep-fatigue life from the stress-strain-
time-temperature history produced by the applied loadings.

It is assumed that the baseline low-cycle fatigue correlation for continuous cycling of a
uniaxial specimen to failure at temperature T1 is represented by the usual equation form:

Nd = e (D Œin)f (4.33)

where “e” and “f” denote material constants, D Œin denotes the inelastic strain range, and Nd
denotes the cycles to failure.   This value of  Nd is input into Eq. 4.31 for computing the fatigue
damage fraction.   Similarly, the baseline uniaxial stress-rupture correlation at temperature T1
required in Eq. 4.31 for computing the creep-damage fraction is represented by the equation
form:

Tr = g (s) h (4.34)

where s denotes the uniaxial stress, “g” and “h” denote material constants, and Tr denotes the
time to rupture.
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4.5.2.1 Bilinear Diagram Intersection Point
Two methods for determining the bilinear creep-fatigue diagram intersection point (F,F)

are summarized in this report section, one method using a single TEH test and a more
appropriate method using a set of several TEH tests.

 Determining Bilinear Intersection Point (F,F) from a Single TEH Test: For a TEH creep-
fatigue test (depicted in Fig. 4.17a and b) with a cyclic inelastic strain range, ) D €in, the fatigue
damage per cycle, dn , is computed  using the equation:

dn = 1/Nd  (4.35)

Total fatigue damage at failure, Dn , is then computed in accordance with the linear
damage equation (Eq. 4.31) using the equation:

Dn =  Nf dn (4.36)

During the constant-strain hold period, stress relaxation occurs as depicted in Fig. 4.17b,
producing a time-varying stress that is characterized by the equation:

sR = f1(t)  >0 (tension) (4.37)

The stress relaxation data are collected during a laboratory test, and the half-life relaxation
curve is utilized for defining f1(t) (i.e., for materials that undergo strain-hardening or strain-
softening during  uniaxial stress-strain cycling, the cyclic stress-strain curve changes throughout
a test; hence the stress-strain curve and stress-relaxation curve at half-life are typically utilized
in life predictions).  Creep damage per cycle, dc , in accordance with the linear damage model, is
then determined by the equation:

dc =
  

† 

dt
Tr
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Combining Eqs. 4.34, 4.37, and 4.38 results in creep damage per cycle of:

dc =

  

† 

dt

g sR( )e[ ]
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Subscript “e” on relaxation stress, sR , denotes that the relaxing stress is computed as the
equivalent stress in accordance with the failure model (i.e., in accordance with the H2P model
for the proposed methodology).  The relationship between the principal stresses and the
equivalent stress is the same for time-dependent creep-fatigue conditions as for time-dependent
conditions.  For a uniaxial tensile stress state during the relaxation period, the H2P equivalent
stress (Eq.!3.7) reduces to the uniaxial tensile stress, giving:
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se =
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s  exp b J1
Ss
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or

  

† 

sR( )e = sR

For stress relaxation under a uniaxial tensile stress state, both the H2P and the Mises
equivalent stress result in (sR)e = sR.

Creep damage per cycle is then determined by the equation:

dc =
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dt
g sR( )h
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Total creep damage at failure in Nf cycles becomes:

Dc = Nf dc   (4.42)

 
The bilinear intersection point (F,F) is determined from Eq. 4.36, Eq. 4.42, and the bilinear

line equations in Fig. 4.16.  One must, however, determine the appropriate line (equation) in
Fig.!4.16 as it relates to which is greater: fatigue or creep damage.  It may be necessary to
assume one is greater than the other and check this assumption when the calculation is
completed.  If the assumption is incorrect, it must be reversed; and the calculation repeated.
These equations lead to the following solutions for “F”:

Case 1: Dc ≤ Dn ( dc ≤ dn )

F =
  

† 

Dc
1 + Dc - Dn
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¯ 
˜ (4.43)

=
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Nf  dc
1 +Nfdc - Nfdn
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Case 2: Dc ≥ Dn ( dc ≥ dn )

F =
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1 + Dn - Dc
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˜ (4.45)
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=
  

† 

Nf  dn
1 +Nfdn - Nfdc

Ê 

Ë 
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ˆ 

¯ 
˜ (4.46)

If  d c ≤  dn , Eq. 4.44 determines the bilinear intersection point (F,F) or if dc ≥  dn , then
Eq.!4.46 determines the point.

Determining Bilinear Intersection Point (F,F) from Multiple TEH Tests:  The better
method for determining point (F,F) is to use a set of several TEH tests in conjunction with least-
squares fit techniques.  The following equations determine predicted life for each test:

Case 1: For  dc ≤ dn

(Np) i =
  

† 

F
Fdn + 1 - F( )dc
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(4.47)

Case 2: dc ≥ dn

(Np) i =
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F
Fdc + 1 - F( )dn
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(4.48)

To set up the least-squares equation, let deviation, di , denote the difference between
predicted and observed life in an individual test “i”; then for a total of “M” tests, one can write
the following m equations:

di = (Np – Nf)i      i=1, M (4.49)

The sum of the squared deviations, SSQ, becomes

SSQ =
  

† 

di
2

i=1

M
Â (4.50)

One can now search and determine the value of “F” that gives the minimum value for SSQ.

4.5.2.2 H2P Model Determining Parameter “b”
With a value for the bilinear intersection point (F,F) determined, parameter “b” is

determined for the H2P model in a similar manner.  It can be determined from a single CEH test
or from a set of several CEH tests using least-squares techniques.  These two methods are
described below.

Determining Parameter “b” from a Single CEH Test: From a CEH creep-fatigue test
conducted at temperature, T1 , the resulting data include the inelastic strain range and a stress
relaxation curve (equation) during the hold period, as depicted in Figs. 4.17 c and d.  The
relaxing stress, as determined from laboratory data, is described by the equation:
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sR =–f2(t) <0             (compression) (4.51)

Fatigue damage during the hold period can be computed in accordance with the linear
damage model (Eq. 4.31).  Parameter Nd is determined by Eq.  4.33.  The resulting fatigue
damage per cycle and total fatigue damage at failure in Nf cycles is determined by Eqs. 4.35 and
4.36, respectively.

During the constant-strain hold period, stress relaxation occurs, producing time-varying
uniaxial compressive stress determined by Eq. 4.51 with the relaxation stress, sR , being
compressive (negative).  For a uniaxial compression stress, s, the H2P equivalent stress is:

se =
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s  exp b J1
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The equivalent relaxation stress, therefore, becomes

|sR|e = |sR|e–2b =  |f2(t)|e–2b (4.53)

Creep damage per cycle is then determined for this case by the equation:

dc =
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dt
g sR( )e
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=
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e2bh dt
g f2 t( )

h0
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Ú

Let “dc“ denote the creep damage per cycle, computed using the linear damage model and
the H2P equivalent stress with stress relaxation defined by sR = f1 (t) >0 for relaxing tensile
stress and  sR =  – f2 (t) <0 for relaxing compressive stress.  Then let “dc1” denote the creep
damage per cycle computed using the linear damage model and H2P equivalent stress with
stress relaxation defined by sR = | f2 (t) | >0 for relaxing compressive stress.  Damage dc1 thus is
given by:

dc1 =

  

† 

dt
g f2 t( )

h0
tnÚ (4.55)
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Then, from Eqs. 4.54 and 4.55, creep damage per cycle for the compression hold test
becomes:

dc = dc1e2bh (4.56)

and total compressive creep damage at failure in Nf cycles becomes:

Dc = Nf dc1e2bh (4.57)

Equations 4.56 and 4.57 show that, when the Mises equivalent stress is replaced by the H2P
model equivalent stress, then for a relaxing uniaxial tensile stress both failure models compute
the same creep damage.  However, for a relaxing uniaxial compressive stress, creep damage
computed using the H2P model is “exp(2bh)” times the damage computed using the Mises
model.

Equations 4.36 and 4.57 in conjunction with the bilinear diagram equations for Lines 1 and
2 (Fig.!4.16) combine to give the following solutions for parameter “b”:

Case 1: For  dc ≤ dn

b =
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Case 2: For dc ≥ dn
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Depending on the relative values of dc and dn, one uses either Eq. 4.58 or 4.59 to determine
H2P equivalent stress parameter “b” from a single CEH test and the previously determined
value of “F.”

Determining Parameter “b” from Multiple CEH Tests:  Given a set of M CEH creep-
fatigue tests, parameter “b” can be determined using a least-squares approach to give a “best
fit” to the data.  Fatigue and creep damage per cycle for each test is determined by Eqs. 4.35 and
4.56.  Letting Np denote predicted life for the creep-fatigue test, and then combining these two
equations with the bilinear diagram equations, gives the following two equations for Np: one
for Line 1 and one for Line 2 on the bilinear diagram:

Case 1: For  dc ≤ dn

(Np)i =
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F
Fdn - F-1( )dc1 exp 2bh( )
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(4.60)
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Case 2: For dc ≥ dn

(Np)i =
  

† 

F
Fdc1 exp 2bh( )- F-1( )dn
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˚ 
˙ 
˙  i

(4.61)

Because the value of “b” is not known at this point, it is necessary to assume that dc!≤ dn or
dc ≥ dn (individual assumption for each test) and then select the associated Eq. 4.60 or 4.61 (the
assumption can be made on the basis of the known values of dc1 and dn).  Then, having M
equations for Np , and M values for observed Nf , the deviation, di , between predicted and
observed life is given by:

di = (Np – Nf)i          i=1 M (4.62)

 
with the sum of the squared deviations, SSQ, being

SSQ =
  

† 

di
2

i=1

M
Â (4.63)

The value of “b” giving the minimum value of SSQ is then searched and determined.

Once the best-fit value of “b” is determined, it is necessary that creep damage, dc , be
recomputed for each test using Eq. 4.56 and that one confirm the initial assumption for each of
the M tests as to whether dc ≤ dn or dc ≥ dn .  If an incorrect assumption was made in any test,
one must reverse the assumption, use the correct equation, and redetermine the value of “b.”

As a second option for determining “F,” a methodology for linearizing the least-squares
problem is summarized in Appendix B.

4.5.3 Potential for Improved Creep-Fatigue Life Predictions
In order to illustrate the potential of the proposed design method to improve life

predictions, predicted lives are compared to observed lives for two hypothetical materials.  For
Material 1, the TEH cycle is more damaging (results in shorter life) than the analogous CEH
cycle.  Materials such as the austenitic stainless steels behave in this manner.  For Material 2, the
CEH cycle is more damaging than the analogous TEH cycle.  Materials such as 2 1/4 Cr-1 Mo
steel tend to behave in this manner when tested in air.  Two laboratory creep-fatigue tests of a
high-temperature alloy steel are selected for Material 1 with the first test being a TEH cycle and
the second being a CEH cycle.  Material 2 is created as a hypothetical material with the first test
chosen to be identical to the Material 1 TEH test.  The second test is chosen to be identical to the
Material 1 CEH test except that life is arbitrarily changed from 1345 cycles to 700 cycles to make
the CEH cycle more damaging than the TEH cycle for Material 2. These “data” are summarized
in Table 4.11.  These values are utilized to demonstrate how the H2P model can improve life
predictions when it replaces the classical Mises model in the linear-damage life prediction
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method. In addition to the test conditions for the four tests, computed fatigue and creep
damages per cycle (dn, dc, and dc1) are given in Table 4.11.  These values are computed from
the baseline low-cycle fatigue correlation for these materials (Eq. 4.33), the baseline stress
rupture correlation (Eq. 4.34), and the experimental stress relaxation equations (Eqs. 4.37 and
4.51) for each test.  In the interest of brevity, these data and calculations are omitted with only
the damage values given.  In addition to the damage values, the slope, h, of the baseline stress
rupture correlation (Eq. 4.34) is required for determining H2P model parameter “b.”  This value
is given in Table!4.11.

The data in Table 4.11 are utilized to determine the values of parameters “F” and “b” for
Materials 1 and 2.  The values of “F” in Table 4.11 are determined from Tests 1 and 3 with the
values of “b” determined from Tests 2 and 4 for Materials 1 and 2, respectively.  Because there is
only one each TEH and CEH test for each material, this results in an exact fit to the data for the
H2P model.  The linear damage model in conjunction with the Mises equivalent stress cannot fit
both the TEH and CEH tests exactly, fitting only the TEH tests.  If one had multiple TEH and
CEH data for a material, parameters “F” and “b” can be determined by least-squares fits to the
total data set.  One can then determine the degree of scatter in the resulting predictions.  This is
not possible with only the four tests utilized to illustrate the methodology.

Table 4.11. Creep-fatigue data utilized in demonstrating H2P failure model applicability to
creep-fatigue failure prediction.

Test
No. Cycle

Test
Temp.

(°F)

Total
Strain
Range

(%)

Hold
Point

Hold
Time
(min)

Cycles
to

Failure
dn dc1* dc*

A.  Material 1 (TEH Cycle More Damaging Than CEH Cycle)

1 TEH 1400 0.4 †max 2.5 1121 4.4609E–5 2.9438E–4 2.9438E–4

2 CEH 1400 0.4 †max 2.5 1345 4.4609E–5 2.1636E–03 1.4577E–4

B.  Material 2 (CEH Cycle More Damaging Than TEH Cycle)

3 TEH 1400 0.4 †max 2.5 1121 4.4609E–5 2.9438E–4 2.9438E–4

4** CEH 1400 0.4 †max 2.5  700 4.4609E–5 2.1636E–3 8.3073E–4

* Slope of baseline stress rupture correlation (parameter “h,” Eq. 4.35) is –6.5410 for both Materials 1 and 2.

** Test 4 is a hypothetical test with Nf arbitrarily set at 700 to create a  Material 2 wherein a CEH cycle is more damaging
(shorter life) than the analogous THE cycle.

For Materials 1 and 2, creep-fatigue life calculations using the linear damage model in
conjunction with  the  H2P and the Mises models are compared in Table 4.12 showing that for
the same value of “F” both the H2P and Mises models predict the same life for the TEH cycles
(Tests 1 and 3); however, parameter “b” gives the H2P model the advantage of being able to
exactly predict the CEH tests (Tests 2 and 4), whereas the Mises model significantly under
predicts life for the CEH tests.
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While overly simplistic, the comparison in Table 4.12 indicates how the H2P model may
have the potential to significantly improve creep-fatigue life predictions, particularly for
structures undergoing stress-strain cycling with hold periods producing compressive stresses or
compressive stress relaxation.  The author hopes that others actively involved in creep-fatigue
R&D and/or Code Rule development will more fully evaluate the proposed method using a
broader range of materials and data.

Table 4.12. A comparison of predicted and observed creep-fatigue lives based on the H2P versus
the!Mises equivalent stress model.

Predicted Life (Np) Using
Linear-Damage Model

WithTest No. Cycle
Test

Temp.
(°F)

Total
Strain
Range

(%)

Hold
Point

Hold
Time
(min)

Cycles
to

Failure
H2P Mises

A.  Material 1 (TEH Cycle More Damaging Than CEH Cycle)*

1 TEH 1400 0.4 Œmax 2.5 1121 1121 1121

2 CEH 1400 0.4 Œmax 2.5 1345 1345   362

B.  Material 2 (CEH Cycle More Damaging Than TEH Cycle)**

3 TEH 1400 0.4 Œmax 2.5 1121 1121 1121

4 CEH 1400 0.4 Œmax 2.5  700  700   362

*Test Set 1: Test 1 utilized to determine bilinear creep-fatigue diagram intersection point “F”= 0.0694 for Material 1.
Test 2 utilized to determine H2P model parameter “b” = 0.2062 for Material 1.

** Test Set 2: Test 3 utilized to determine F = 0.0694 for Material 2.
Test 4 utilized to determine b = 0.0732 for Material 2.
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5.0 SUMMARY AND CONCLUSIONS

A new two-parameter failure model was developed by the author and initially reported in
1984.  In 1990, after demonstrating significantly improved life predictions for creep-rupture
tests of Type 304 stainless steel as compared to the classical models of Tresca, Mises, and
Rankine, the two-parameter failure model, denoted as the H2P model, was incorporated into
ASME Code Case N47-293 for the design of components operating in the elevated-temperature
creep-rupture region.  The objective of the current work was to evaluate the model’s ability to
provide improved failure predictions relative to the classical failure models of Mises, Tresca,
and Rankine for both time-independent failure and time-dependent, cyclic creep-fatigue failure.
This objective was met.  These current assessments, in addition to the prior assessments,
provide significant validation of  the model for predicting time-independent fracture and time-
dependent creep-rupture.   A proposed method for improving life predictions for failure under
time-dependent, cyclic creep-fatigue appears to have the ability to improve life predictions
there as well, particularly where creep damage occurs under compressive stresses or under
relaxing compressive stresses.

One can  speculate on what values parameter “b” may have for material failure under
time-independent fracture versus time-dependent creep-rupture and creep-fatigue.  Does, for
example, a material have one unique value for parameter “b?”  For time-independent failure,
materials having equal tensile and compressive strengths have a value of b=0.00.  Many
materials fall into that category.  The author has conducted tests of high-strength tungsten
carbide obtaining tensile strengths of 150 ksi (1,034 MPa) with a corresponding compressive
strength of 950 ksi (6,550 MPa).  The associated value of “b” is 0.92.  Because most homogeneous
materials have a compressive strength equal to or greater than the tensile strength, one can
conclude that for time-independent failure of homogeneous materials, the value of “b” for
essentially all materials will fall in the range from 0.0 to 0.92. Most commonly used structural
materials have a ratio of compressive to tensile strength of less than 2.0, which would place the
value of “b” for time-independent failure of most materials in the 0 to 0.35 range.

Insufficient data correlations have been made for creep-rupture to define or estimate the
probable range in value for “b.”  For time-dependent creep-rupture, for the three data sets
evaluated to date (Types 304 and 316 stainless steel and Inconel 600), the value of “b” has fallen
in the range of 0.19 to 0.29.  At this point, the author has not determined parameter “b” for
different creep-fatigue data sets encompassing different materials. The data for hypothetical
Material 1 in the current investigation (which was based on an actual test result) yielded a value
of “b” = 0.069.  This result is obviously insufficient in itself to draw any conclusions relative to
the range of values one might expect in creep-fatigue tests.  The idea of one value of  “b” for all
failure modes of a specific material, while desirable, is not likely.  If, for example, one chooses to
determine “b” by the ratio of compression to tensile failure strength, then in order that all
failure modes have the same value of “b,” the ratio of compression to tensile strength would
have to be the same for all failure modes.  This is not true in general.
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The following specific conclusions are reached in this study:

1.  The classical failure models of Mises, Tresca, and Rankine are incorporated into major
structural design codes such as the ASME Code.  These models have identified
deficiencies, two of which are the inability to distinguish between failure under tensile
versus compressive stress states and the inability to account for the effect of
hydrostatic pressure on failure.

2. A new two-parameter failure model, i.e., the H2P model, has been developed and has
the ability to correct the two noted deficiencies in the classical failure models.  At this
time there appear to be no “soft spots” in the model formulation or in the application
of the model for predicting failure under any arbitrary triaxial stress state.  It behaves
very much like the classical Mises failure model.

3. As compared to the classical failure models, the H2P model offers the potential for
significantly improved prediction of time-independent failure under a generalized
triaxial stress state as demonstrated in assessments utilizing fracture data for cast iron
and for marble.

4. As compared to the classical models, the H2P model has demonstrated the ability to
provide significantly improved life predictions for time-dependent creep-rupture for
three elevated temperature steel alloys:  Types 304 and 316 stainless steels and Inconel
600.

5. The linear damage life prediction methodology utilized in ASME CCN47 for
predicting life under cyclic creep-fatigue conditions was modified by replacing the
Mises failure model with the H2P failure model; and it appears to have the potential
to improve creep-fatigue life predictions, particularly for cyclic loadings introducing
hold periods involving compressive stresses.
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 6.0  RECOMMENDATIONS
For the failure modes, stress states, and materials assessed to date, the H2P failure model

has demonstrated the ability to more accurately predict failure under both time-independent
and time-dependent failure conditions as compared to the classical failure models of Mises,
Tresca, and Rankine.  Additional validation of the model for a broader range of materials and
triaxial stress states for both time-independent and time-dependent failure conditions would
further demonstrate the model and provide additional confidence in the model’s capabilities.
For the important area of time-dependent, cyclic creep-fatigue, a methodology for predicting
failure was outlined but is not sufficiently validated.  The methodology outlined should provide
life predictions similar to the Mises-based methodology for creep-fatigue cycles with tensile
hold periods.  The methodology has the potential to improve life predictions for cycles
involving relaxing compressive stresses.  However, validation of the methodology is needed,
incorporating different materials and different creep-fatigue stress-strain cycles.

Finally, it is recommended that relevant ASME Code bodies evaluate the H2P failure
model to determine its potential for improving existing Code rules for design against both time-
independent fracture and time-dependent creep-fatigue failure.
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APPENDIX A.  LEAST-SQUARES METHOD FOR DETERMINING H2P MODEL
PARAMETER “b” FOR A SET OF M TIME-INDEPENDENT FAILURE TESTS

A least-squares-fit procedure for determining a value for H2P model parameter “b” from a
set of M time-independent failure tests was derived by Merkle1 and was provided to the author
of this report along with Merkle’s excellent technical review of the draft report.  The procedure
is summarized below and provides a relatively simple way to determine parameter “b” for this
type of data.

For the H2P model, the deviation, di , between the predicted value of stress at fracture, s0 ,
and the observed value of stress at fracture, se , was previously given by Eq. 3.25.  For M tests,
there are M equations for the deviations, di .  Because these M equations are non-linear, one
cannot solve for parameter “b” outright to obtain a closed-form solution that will minimize the
sum of the squared di deviations as previously expressed by Eq. 3.26.  One can, however,
convert this non-linear least-squares problem into a linear problem, then solve for parameter
“b” outright.  The method derived by Merkle for doing this is summarized in this appendix.

Let

di =
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then rearrange to get
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Let

µi = Ln
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1Merkle, John G., Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831.
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ui = Ln 
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and
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Then,

µI = vI + b(yi – 1). (A.8)

Summing the squares of µ i and taking the partial derivative with respect to “b” to
minimize the sum of the squares gives:
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or
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Solving for “b” gives
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One can now reinsert the yi and ui giving:
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Eq. A.12 was used to determine a least-squares fit value for parameter “b” for Pugh et al.’s
time-independent failure data in Table 4.4  The resulting value was 0.440.  By comparison,
Eq.!3.15 was used to determine a value for “b” as an exact fit to the average of the two pure
compression tests in Table 4.4.  The resulting value was 0.687.  A direct comparison of how well
the H2P model correlates the data in Table 4.4 for the two values of “b” would be of interest;
however, Merkle’s least-squares procedure for determining parameter “b” was not available
until after completion of this report.
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APPENDIX B.  LEAST-SQUARES METHOD FOR DETERMINING H2P MODEL
PARAMETER “b” FOR A SET OF M CEH-TYPE, CREEP-FATIGUE TESTS

A least-squares-fit procedure for determining a value for H2P model parameter “b” from a
set of M CEH-type, creep-fatigue failure tests was derived by Merkle1 and was provided to the
author of this report along with Merkle’s excellent technical review of the draft report.  The
procedure is summarized below and provides a relatively simple way to determine parameter
“b.”

Given a set of M CEH type, creep-fatigue failure tests, Eqs. 4.61 and 4.62, in conjunction
with least-squares techniques are used to determine a “best fit” value for Case 1 (dc ≤ dn ) and
Case 2 (dc ≥ dn ) as outlined in Section 4.0 of this report.

B.1.    Case 1 (dc ≤ dn ):

Equation 4.61 determines the predicted life, Np , for Case 1.  This equation can be written
as
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Let

Q   =  Exp(2bh) (B.2)

then, Eq. B.1 becomes
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and insert into Eq. B.3 giving
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1Merkle, John G., Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831.
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Let the deviation, di , between the predicted life (cycles to failure), Np , and the observed
life, Nf , in an individual test “i” be expressed by the equation:

di =  
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-
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Nf( )i

(B.6)

or
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The least-squares value for “b” is then determined by summing the squares of the M
deviations for the M tests, then taking the derivative of the sum with respect to parameter Q,
and then solving for Q as follows:
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and solving for Q gives
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From Eqs. B.10 and B.2, parameter “b” is:

b =
  

† 

Ln(Q)
2h

(B.11)

The least-squares-fit value of H2P model parameter “b” based on a set of M CEH-type
creep-fatigue tests with dc ≤ dn can be determined using Eqs. B.10 and B.11.
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B.2. Case 2 (dc ≥ dn):
Equation 4.62 determines the predicted life, Np , for Case 2.  This equation can be written

as
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Inserting F’ from Eq. B.4 gives
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As in Case 1, let
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thus,
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Next, summing the squares of the deviations, di , and taking the partial derivative relative
to Q, and equating the sum to zero gives:
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Solving for Q gives
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and then from Eq. B.2:

b =  
  

† 

Ln(Q)
2h

The least-squares-fit value for H2P model parameter “b” based on a set of M CEH type
creep-fatigue tests with dc ≥ dn can be determined using Eqs. B.19 and B.20.

Note that a set of M tests may have some tests with dc ≤  dn and some with dc ≥  dn.  The
procedures derived in this appendix will not work for a mixed data set of this type.
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 NOMENCLATURE
 

 Ai  = constants that determine which point in stress/failure space a failure model
identically fits [dimensionless]

 A,B,C = H2P failure surface, geometric lengths (Fig 3.1) [psi]

 C = Fig. 3.5, material compressive strength [psi]

 CEH = stress-strain cycle with hold point on compression side of cycle
[dimensionless]

 D = total damage (creep plus fatigue damage) in linear damage model
[dimensionless]

 Dc = total creep damage in linear damage model [dimensionless]

 Dn = total fatigue damage in linear damage model [dimensionless]

 F = location of “knee”, (F,F), in bilinear creep-fatigue interaction diagram
[dimensionless].

 J1 = 1st invariant of the stress tensor,  sij [psi]

 J2 = 2nd invariant of the stress tensor, sij [psi]

 J2' = 2nd invariant of the deviatoric stress tensor, Sij [psi]

 M = number tests in a data set [dimensionless].

 Nd = low-cycle fatigue (LCF) life computed from baseline uniaxial LCF correlation
[cycles]

 Nf = experimentally observed cycles to failure [cycles]

 Np = predicted cycles to failure [cycles]

 P = applied hydrostatic pressure (P≤0) [psi]

 Si = deviatoric stresses for i=1,3 with S1 ≥ S2 ≥ S3 [psi]

 Ss = H2P model invariant stress parameter [psi]

 SSQ = sum of the squared deviations of di in least-squares calculation [units of di2]

 T = Fig. 3.5, material tensile strength [psi]

 T = temperature [°F]

 T1 = test temperature for a specific test [°F]

 Tr = creep-rupture time [hrs]

 TEH = stress-strain cycle with hold point on tension side of loop [dimensionless]

 W = applied torsional stress for cylindrical specimen [psi]

 Z = applied axial stress for a cylindrical specimen [psi]
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 a = H2P failure model parameter [dimensionless]

 b = H2P failure model parameter [dimensionless]

 c,d = Data Set 1 scaling factors for parameters scv and s1 , respectively [psi/in]

 dc = creep damage per cycle computed using linear damage model and H2P
equivalent stress with stress relaxation defined by sR = f1(t)>0 for relaxing
tensile stress and sR = f2(t)<0 for relaxing compressive stress [dimensionless]

 dc1 = creep damage per cycle computed using linear damage model and H2P
equivalent stress with stress relaxation defined by sR = -f2(t)>0 for relaxing
compressive stress [dimensionless]

 dn = fatigue damage per cycle [dimensionless]

 dt = infinitesimal time increment [hr]

 e, f = baseline low-cycle fatigue equation material constants (multiplier and
exponent, respectively) [“e” in cycles, “f” dimensionless]

 f1(t) = time-dependent stress relaxation for a tensile hold (TEH) cycle [psi]

 f2(t) = time-dependent stress relaxation for a compressive hold (CEH) cycle [psi]

 g, h = baseline creep-rupture equation material constants (multiplier and exponent,
respectively) [“g” in hr, “h” dimensionless]

 n = linear damage model, number of applied cycles of loading condition, j
[dimensionless]

 p = linear damage model, number of different cyclic loading conditions with
unique strain-range-temperature combinations required to represent the
specified loading history [dimensionless]

 q = number of different time intervals with unique stress-temperature
combinations required to represent the specified loading history in linear
damage model [dimensionless]

 th = hold time in a creep-fatigue test cycle [hr]

 u.v = rectangular coordinate system on creep-rupture test specimen [in.]

 

 Greek

 di = deviation between predicted and observed parameter value [units of
parameter]

 dt = time duration of loading condition, k, in linear damage model [hr]

 Œ = strain [in/in]

 Œ1, Œ2, Œ3 = principal strains in rectangular coordinates [in/in]
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 Œr, Œq, ŒZ = principal strains in cylindrical coordinates [in/in]

 Œmax = maximum strain in a cyclic, stress-strain loop [in/in]

 Œmin = minimum strain in a cyclic, stress-strain loop [in/in]

 DŒin = inelastic strain range [in/in]

 DŒt = total strain range [in/in]

 s = stress [psi]

 

† 

s = Mises equivalent stress [psi]

 scv = volumetric compressive stress, J1/3 [psi]

 se = equivalent stress computed using a selected failure model [psi]

 si = principal stresses in rectangular coordinates (i=1,3 with s1 ≥  s2 ≥ s3)
and principal stresses in cylindrical coordinates (sr , sq , sz ) [psi]

 smax = maximum stress [psi]

 smin = minimum stress [psi]

 sR = time-dependent stress during stress relaxation [psi]

 (sR)e = relaxing stress evaluated using a selected failure model equivalent stress [psi]

 s0 = material tensile strength [psi]

 s0c = material compression strength [psi]

 sv = volumetric stress, –J1/3 [psi]

 su, sv = principal stresses on a cylindrical creep-rupture specimen [psi]

 t0 = material torsional strength [psi]

 tmax = maximum shear stress [psi]

 

 Subscripts:

 R = denotes stress relaxation

 e = denotes that the item in brackets or parentheses is evaluated using the
equivalent stress, se

 f = denotes parameter value at specimen failure

 i,j,k = index notation, indexing integers
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